Projects Guide

For ROBOTIS ENGINEER O
Volume 2 ’\)/\)

QQ CNT Robotics LLC, Buford
2021

Chapter 4: Enhanced Pan-Tilt Commando with RPi4B

Fig. 4.1 shows the “Enhanced” PTC (E-PTC) used for projects described in this Chapter 4:

An RPi4B, with 8 GB RAM and Pi Camera running on 64-bit Raspian, is used as&C?
Controller” to the CM-550, replacing the RPiOW and the Windows PC used ix the eaf-
lier chapters described in Thai (2020) (i.e. Volume 1). Although the RPi4BNZ do
the main computing work for most projects in this chapter, within the ROBOTIS Dy-
namixel Network Paradigm the CM-550 retains the “Top- Controller d&tion (see
Section 1.4 of Volume 1). This RPi4B shares into the CM-550’s LiP ry using a
12V-to-5V converter (see Appendix B for more details about settm%the RPi4B and
CM-550, hardware-wise and software-wise).

-~/
Fig. 4.1 “Enhanged” PTC with RPi4B and Pi Camera.

The CM- 550 i equipped with two DMS-80 sensors via its GPIO Ports 1 and 2.

The reader a ds to make sure that the TASK App is of V. 3.1.5 or above for the ex-
ample co is Chapter to work properly.

e additional hardware and software capabilities to the CM-550 by using a tightly

This “E-P groyot was constructed to allow the exploration of several ideas/concepts:

d general-purpose SBC such as the RPi4B via wired Serial Communications.
Introduce the concept of Independent Dynamixel Networks (IDN) which allows some
actuators to be controlled directly by the RPi4B while other actuators remain under the
control of the CM-550 (Sub-Section 4.5.1).

Develop a Supervisory Control (SC) role for the Desktop PC which can control multiple
RPi4B+CM-550 types of robots via Bluetooth and/or WiFi Communications (Sub-Sec-
tion 4.5.2).

Inasmuch as possible, Chapter 4 would maintain the “parallel tracks” approach used in Volume
1 by developing first the TASK and MicroPython tracks for the CM-550, followed by the Standard
Python tracks designed for the RPi4B and Desktop PC, and lastly with the C/C++ tracks created
for the RPi4B and Desktop PC.

The reader will see that the “glue” that keeps all the above component systems working to-
gether is the familiar Remocon Packet amply illustrated in Volume 1. Please see Fig. 4.2 for the
overall communications scheme used for most of Chapter 4, except for Section 4.5 where the I{/
concept is implemented via the Dynamixel SDK which adds the features of Dynamixel Packets
(Protocol 2), and via the use of a new ROBOTIS hardware module called Dynamixel HAT (-

HAT), designed exclusively for the RPi series. V
Desktop PC ’
— ‘,;., — Remocon
» e Packets Raspian
% "-. via Bluetooth Eirnelon e
. N « Pi Camera
= "o. Caa”S.-"A
- . lu ¥
-"'. ﬁ RPI4B | Dynamixel < XL430
“"- "’-. Function.,."
-..... Remoc.oa'.. Cal\s..’....‘-" IMU
e Packets ‘e
Console *# 2
P:):::lc;ge to P.C.' Gl via Wired UART or‘ CM-550 p=es DMS-80

via CM-550's UART ~ *w,, ~ MicroUsBPorts _ o=* 47
& BT-210 T SAE
.

-
e = Commands
e

= via BLE Port

v

Fig. 4.2 Overall Communic@heme used for Projects in Chapter 4.

Fig. 4.2 also hinted that Progr Qn complexity went up a notch, as 3 levels of program-
ming would need to be coordinated frofm now on!

The TASK and MicroPyth@grams developed in this Chapter 4 (and in later chapters as
well) would exhibit both ous and remote-controlled behaviors, for example:

e The human gperator may issue Manual RC commands to the E-PTC robot from the
eskiop PC or a Mobile Device, but the CM-550 would use its DMS-80 sen-
m its own Autonomous Obstacle Avoidance maneuvers when needed, thus
the human operator’s RC commands in such situations.
e T i4B may be in its autonomous Color Object Tracking mode via the Pi Camera

is sending Object Tracking data over to the CM-550 for it to determine proper

ot maneuvers to keep a Color Object centered within the Pi Camera’s viewport.

However, if erroneous Object Tracking Data are being sent, resulting in the E-PTC ro-
bot potentially driving into the object itself, then the DMS-80s would kick in to prevent
such an event to happen.

Section 4.1 is written for TASK coders and concentrates on the TASK programming require-
ments at the CM-550 level (see Fig. 4.2). If the reader is a MicroPython coder, please skip to Sec-
tion 4.2 to read about the equivalent MicroPython programming requirements for the CM-550.
Sections 4.3, 4.4 and 4.5 are written for readers who have gone through Section 4.1 or Section 4.2.

link the RPi4B to the CM-550’s micro-USB Port, and a BT-210 to link the Desktop PC to M-
550’s UART Port (see Appendix B for more details on the hardware used and alternv ns):

1. The first one establishes a Dual Control framework so that the CM-550.can be con-
trolled by either the RPi4B and a Mobile Device, or both at the sam % This TASK
solution is named “PTC_RCSD_VSR_PC_RPi.tsk3”.

2. The second one adds an Autonomous Obstacle Avoidance featt)@the previous Dual
Control framework, and this TASK solution is named O
“PTC_SA_RCSD_VSR_PC_RPi.tsk3”. Q

4.1.1 Dual Control from Mobile Device and/or PC Wﬁ%wﬂace

The goal for this project to use a Mobile Device su¢has a Tablet or a Phone, via the Engineer
App (see Fig. 4.3), to act as the main Remote Controller f6y-a human operator to issue maneuver-
ing commands to the E-PTC, via Touch Areas (i. iasthe CM-550’s BLE Port).

Fig. 4.3 shows that there are three main g!oupsl commands and two independent “modes”
(SD and RPi/PC) that the human operator ca or the robot:

1. The “ROBOT” group has tm 1 motion-direction commands such as Forward/Back-

4.1 Using TASK s
Two TASK projects are described in Section 4.1, and both used an OTG (or plain) U‘% (0

ward/Left/Right.

2. The “CAMERA” group
the Pi Camera.

3. The “Faster” and “S%&” Touch Areas can be used to change the SPEED of the robot

on the fly.
4. The “SD” Toug %a in Fig 4.3 can be used to switch ON/OFF the “SD” mode:

It and Pan commands that can be issued to re-orient

> mode is ON (Yellow color), the ROBOT, CAMERA and SPEED com-
an be issued by the operator.
%}%}“SD” mode is OFF (Gray color), the ROBOT, CAMERA and SPEED com-
s are not available to the operator.
arly, the “RPi/PC” Touch Area in Fig 4.3 can be used to switch ON/OFF the flow of
mg@con Data Packets coming from either the RPi or PC platforms.
QS expected than the two modes “SD” and “RPi/PC’ can be switched ON/OFF sepa-

Q@ rately or at the same time by the operator.

€ R+ENGINEER

SD Forward RPi/PC

Left ROBOT Right
Backward Tilt_U

Pan_L CAMERA Pan_R

Tilt_D

SD Forward
Left ~ ROBOT Right

Backward

Fig. 4.4 R)% utputs from Configuration recommended by the author.

e The Remote Port (Address 43) can receive and transmit Remocon packets
fr the PC or RPi4B depending on how the user sets it up. Line 342 showed that
thor used the micro-USB COM Port to connect the CM-550 to the RPi4B via a
Becable.
e CM-550’s App Port (Address 36) can receive and transmit SMART commands to
‘) the ENGINEER App running on a Mobile Device. The CM-550’s BLE COM Port is best
used for this function thus Line 344 showed that the App Port is set to work through
the BLE COM Port.
e The CM-550’s Task Print Port (Address 35) is the Destination Port for the various
PRINT and PRINT-LINE commands issued from the programmer’s TASK code. Line

346 showed that the author used the CM-550’s UART COM Port to connect the CM-550
to the Desktop PC via a BT-210 Receiver.

Ideas for further explorations (IFFE 4.1):
4.1.1.a: During runtime for the program “PTC _RCSD VSR PC RPi.tsk3”,the reader may
have noticed that, at times, the SD and RPi_PC modes were not easy to turn ON/OFF via ‘ ,
the Mobile Display’s Touch Areas, this was because the operator’s finger may have lingere
in these Touch Areas “too long”. One possible solution is to use a WAIT WHILE Loop thc&
terminates only when a Finger Release is detected (after the detection of the original er
press, of course). The example program “PTC_RCSD VSR PC RPi WR.tsk3 ,sho
these two WAIT WHILE Loops on Lines 38 and 52. O%
[]

4.1.1.b: (applicable after Section 4.3 or 4.4) When both SD and RPi PC @S are ON
during runtime for the program “PTC_RCSD_VSR _PC RPi.tsk3”, the fed¥er may have
noticed that the robot had a repetllzve “stop-and-track” behavior whé@s trying to track
the user’s color object. This was a “side-effect” of the currently pro@1 med action for the
robot to do, when no Touch Area had been detected during 0f the Main Endless
Loop, the robot is to STOP (see Line I 9) The new code

“PTC RCSD VSR PC RPi NS.tsk3” provides a moy contlnuous " tracking behavior
(see Lines 113-116). Which behavior did the reader’PXeferY The “continuous-tracking”
behavior seemed less “intelligent” to the author as, longer time to settle its tracking
behavior, upon a color ob]ect standing still, as c pare 'for the “stop-and-track” behavior,
this was “counter-intuitive”’! Why so?

4.1.2 Dual Control with Autonom tacle Avoidance

This section describes an “addﬂféa ure to the Dual Control capability demonstrated in the
previous Section 4.1.1. Fig. 4.1 describes how the Left and Right DMS-80s are mounted in front of
the E-PTC robot, and in this , the Pan-Tilt servos will stay at their initial Goal Positions dur-

ing run time. Therefore, wi i§"configuration, the E-PTC robot can detect a “single” obstacle
only in 3 ways: right in frong ofit, or to the left or to the right of it.

A

4.2 Using Micro

This sectigmis written for MicroPython coders who did not read Section 4.1 (but if the reader
did study @4. before getting here, please bear with some “unavoidable” information repeti-
tions)

I 2021, the ROBOTIS MicroPython API is published at this link https://emanual.ro-
botis.com/docs/en/edu/pycm, but it is not quite complete yet at present (Summer 2021): for ex-
ample, the SMART Functions are not yet documented.

Two MicroPython projects are described in this Section 4.2 and both used a USB cable to link
the RPi4B to the CM-550’s micro-USB Port, and a BT-210 to link the Desktop PC to the CM-550’s
UART Port (see Appendix B for more details on the hardware used and alternate options):

1. The first one establishes a Dual Control framework so that the CM-550 can be con-
trolled by either the RPi4B or a Mobile Device, or both at the same time. This TASK so-
lution is named “PTC_RCSD_VSR_PC_RPi.py”.

2. The second one adds an Autonomous Obstacle Avoidance feature to the previous Dual
Control framework, and this solution is named “PTC_SA_RCSD_VSR_PC_RPi.py”.

4.2.1 Dual Control from Mobile Device and/or PC Virtual Interface Q
The goal for this project to use the Engineer App running on a Tablet or a Phone see%)4.17)
to act as the main Remote Controller for a human operator to send maneuvering c ands to the
E-PTC, via Touch Areas and through the CM-550’s BLE Port.
o

) _

€ R+ENGINEER

- sD Forward RPi/PC

319 198 740
319 199 71

321 194 793

s | @ft ROBOT Right

320 199 723
320 197 759

321 195 780

) Ve 4 Backward Tilt_U

321 197 768
318 202 696

317 197 79

T Pan_L CAMERA Pan_R

316 200 N7
316 199 749

318 195 809 -|
312 201 736 Tl t_D

312 198 777

Fig. @Mgﬂe Display at run time for the Dual Control Project.

4.2.2 Dual % 'th Autonomous Obstacle Avoidance

iow 4.2.1. Fig. 4.1 described how the Left and Right DMS-80s were mounted in front
obot, and in this project, the Pan-Tilt servos would stay at their initial Goal Positions

The algorithm in this project uses the Dual Control algorithm as previously described in Sub-
Section 4.2.1, but only when the DMS-80 sensors report that there is no obstacle “near-by”, that is
when both report a sensor value less than a user-set threshold_1 value (=600, in this project). ...

However, there is one crucial task to execute next before RC commands are allowed back to the
operator (i.e., back to the beginning of the Main Endless Loop), and this is illustrated in Fig. 4.29
also:

e Here, the author assumes that the operator still has his/her fingers on the Touch Areas
corresponding to the “mistaken” maneuvers, thus the WHILE Loop (Lines 427-428) is
used to “wait out” for the operator to release all fingers from the Mobile Touch Screet
The 0 ms delay (Line 428) is used because an “empty-body” loop is not allowed in M

croPython code.

e Lines 431-435 illustrates a more standard coding approach to provide the samew
time result which may be more familiar to some readers (but likely slower).y

e Asachallenge to the reader, please note that if Parameters touch1 and touch?2 are used
instead in Line 427, this would result in a run-time error (infinite loop): l%is left for

readers to figure out why. o\
A~

success() dmm

while ((smart.read8(10310) != @) or (smart.read8(10400) != 0)):
delay(0)

5 def success():
global obstacle
stop()
buzzer.melody(3)
buzzer.wait()
delay(2000)
obstacle = False

y 4
Fig. 4.29 P@f Obstacle Avoidance Algorithm in “PTC_SA_RCSD_VSR_PC_RPi.py”.

4.3 Usij d Python on RPi4B and Desktop PC

This Section 4.3 is common to TASK and MicroPython coders and it uses Standard Python. It
should Be read after either Section 4.1 or 4.2 had been studied. The two projects described in this
section implement the overall communications scheme illustrated in Fig. 4.2:

1. The first project is developed for the RPi4B, equipped with the Pi Camera, to work as a
Vision Processor with a similar role as the RPiOW provided by ROBOTIS in the
ENGINEER Kit 2. The RPi4B can also perform as a Secondary Remote Controller for

the E-PTC robot using the keyboard from the Desktop PC (with the Mobile Device stay-
ing as the Primary Remote Controller).

2. The second project is designed to allow the Desktop PC to work as a Central Data Hub
receiving various sensors and actuators data from the E-PTC. The full utility of this
second project will be realized later in Chapter 5, when it is used to perform Supervi-
sory Control of two “RPi4B+CM-550" based robots: E-PTC and A4WP-H. :

4.3.1 RPi4B as Vision Processor/Remote Controller V

At the time of writing of this book (Spring 2021), the Pi Camera utilities such as raw
raspivid and the Python picamera module were not working with the 64-bit Raspian Beta
(https: //www.raspberrypi.org/forums/viewtopic.php?{=29&t=213435 i

lit=picame

possible hardware performances of the Pi Camera would be achievable with thi

The Standard Python solution to this project is named Q
“PTC_RCSD_Color_Tracker_XY_RPi.py” and it is based on the codew
“PTC_RC_Color_Tracker_XY.py” which was written for the Windo nvironment and a
wired webcam. The program “PTC_RC_Color_Tracker_XY.py’, :@viously described in Sub-
Section 3.4.1 in Volume 1 (Thai, 2020), so its details will not b%{ed in this Sub-Section 4.3.1
and only new codes required to adapt this code to the RPi nvirdhment and the Pi Camera will
be described further (see Fig. 4.30): &

1. The PySerial module is used for communi programming between the RPi4B and
the CM-550 via their respective USB pptts. Line 45 shows that the RPi4B OS assigns
the device ttyACMO to this USB-to-USB connection (see Appendix B — Section B.1 for
more details). The baud rate is set 57. ps and both read and write time-outs are set
to O for immediate return up(?%w any communication functions such ser.read()

gram.

and ser.write() later in the pr
o) B

(1) 45 ser = serial.Serial("/dev/ttyACM@", 57600, timeout=0, write_timeout=0)

UP_ARROW = 65362

(2) 59 DOWN_ARROW = 65364
LEFT_ARROW = 65361

2 RIGHT_ARROW = 65363

3) L vid_cam.set(cv2.CAP_PROP_FPS, 90)
vid_cam.set(cv2.CAP_PROP_FRAME_WIDTH, 648)
vid_cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

(4) vid _frame = cv2.flip(vid frame, -1)

‘ Q (5) element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (21,21))

target_opened = cv2.morphologyEx(target_frame, cv2.MORPH_OPEN, element)

Fig. 4.30 New Codes needed for “PTC_RCSD_ Color_Tracker_XY_RPi.py”.

Pi Camera FOV @ different WxH & FPS

e 540480 @ FPS<=40 ERS>= 50 V
H 640x40ﬂ@ FPS ‘\)

-i|

chosen combination of frame rate an ize.

Fig. 4.31 Pi Camera’s Field of View (FOV) chanies ing on

4.3.2 Desktop PC as Central Data Hub &

In Sections 4.1 and 4.2 (see Fig. 4.4), the TASKtool¢alled “Program Monitor Output” was
used to display PRINTLN outputs of the IMU’s Yaw data from the CM-550 directly to the Desktop
PC, via a BT-210 connected to the CM-550’s UART Port. In this Sub-Section 4.3.2, a self-standing
Python program is developed for this tas 't%e is “PTC_Data_Central_PC.py” and it is de-
rived from the program named “PTC_Méj@ "_Central.py” described in Sub-Section 3.4.4 of
Volume 1 (Thai, 2020). Later in Cha, TC_Data_Central_PC.py” will be enhanced to allow
the PC to become a Supervisory Cm o of two robots: E-PTC and A4WP-H.

100 it ((key_i == p) or (key_2 == p)): # Toggling on Key p (i.e. PTC)
101 if (robot_1 == False):

102 img_1 = cv2.imread(im_PTC_ON)
103 cv2.imshow(window_1, img_1)
104 robot_1 = True

185 btserl.reset_input_buffer()
106 time.sleep(0.1)

107 else:

108 img_1 = cv2.imread(im_PTC_OFF)
109 cv2.imshow(window_1, img_1)
110 robot_1 = False

Fig. 4.34 Key “p” flip-flops robot_1 to TRUE/FALSE and img_1 to im_PTC_ON/OFF in
“PTC_Data_Central_PC.py”.

10

4.4 Using C/C++ on RPi4B and Desktop PC

This Section 4.4 is also common to TASK and MicroPython coders and it uses Standard
C/C++. The projects described in this section implement the overall communications scheme il-
lustrated in Fig. 4.2:

1. The first C++ project was developed for the RPi4B, equipped with the Pi Camera, t
work as a Vision Processor with a similar role as the RPiOW provided by ROBOT
the ENGINEER Kit 2. The RPi4B would also be able to perform as the Seconda
mote Controller for the E-PTC robot using the Desktop PC via VNC Viewer, ¢f course
with the Mobile Device staylng as the Primary Remote Controller.

2. The second C++ prOJect is designed to allow the Desktop PC to work as a @gn al Data
Hub receiving various sensors and actuators data from the E-PTC. The fulltility of
this second project will be realized later in Chapter 5, when it is use }%erform Super-
visory Control of two “RPi4B+CM-550" based robots E-PTC an’d&

4.4.1 RPi4B as Vision Processor/Remote Controller O

In the author’s earlier experiments with the RPi4B, the C/C+ @ute always gave the best per-
formances over the Python route, so the author was surpri isappointed at the actual poor
performances obtained when using C/C++ via Code::Blocks 7.2, and having the Mobile Device
as Main Remote Controller (see video at https://wwwafeutube.com/watch?v=dt29 zM-eWA). As
the Raspian 64-bit OS is in its Beta phase currently 3¢ ber 2021), the author does not know if
the following issues reported here will be resolv future or not.

On the RPi4B and for C/C++ programming, the uSer has a choice between using the ROBOTIS
ZigBee SDK or the BOOST ASIO Library, whe 1 communication port is needed between the
RPi4B and the CM-550 (which is the casﬁthis first project):

1. Programs using the ttyACﬁv , 1.e., via the USB cable, had the following problems:
e The ZigBee SDY%J eate codes that would compile with no errors, but at run
time these ¢ 1d report that they could not connect through ttyACMO.
e The Boost ASI:Pibrary can create codes that would compile and execute with
no errors{ but their run-time performances were very poor through ttyACMO.
2. Programs usi 0 (i.e., plain 3-wire cable) or ttyUSBO (actual LN-101 on RPi4B
USB Port e following issues:
Bee SDK can create codes that would compile and run with no errors,
% ir run-time performances were very poor.
&T e Boost ASIO Library can create codes that would compile and execute with
The ﬁ\

no errors, but their run-time performances were also very poor. ...

ferred from all the above results that the ENGINEER App must have been requir-
in omputing and communications resources from the CM-550’s BLE Port such that it ne-
g@t e UART message traffic between the RPi4B and the CM-550 (see related issue in Sub-
Section 6.2.2). But when using the BLE Port for simpler PRINTLN commands requiring less re-
sources, then the CM-550 can reroute more resources to the UART message flow and therefore im-
prove object tracking performances. Therefore, if the ENGINEER App needs to be used in the
reader’s project, the best development environment is Python.

11

4.4.2 Desktop PC as Central Data Hub

For the Central Data Hub project in C++, the author chose the ttyACMO option for the
RPi4B/CM-550 connection via USB ports, and the BT-210 via UART to connect between the CM-
550 and the PC, i.e., the same hardware set up used in the Python solution described in Sub-Sec-
tion 4.3.2. Thus, on the RPi4B the author used the previous program
“PTC_RC_Color_Tracker_XY_RPi_BST.cpp”, and on the CM-550, he also used the previous pr
gram “PTC_RC_VSR_PCDH_RPi.tsk3/py”. A reminder that the program <)
“PTC_RC_VSR_PCDH_RPi.tsk3/py” has an IF-ELSE structure designed to trigger the “Yaw-An
gle” event only after a given Count (=100) of repetitions performed by the Main Endless Loo

The run-time performance of this C++ program was much better than its Python eq
from the previous Sub-Section 4.3.2. But Fig. 4.37 showed that the (X, Y, Area) Remacon ackets
were sent from the RPi4B to the CM-550 at a mere 57.6 Kbps baud rate and conse ly the Pan-
Tilt platform was not quite responsive to the author’s liking, yet! Fortunately, prmg 2021,
ROBOTIS released a Dynamixel HAT (Hardware Attached on Top) for the R 0 -pin GPIO
bus which would allow the RPi4B to directly control the XL.430 actuators a uch faster Dy-
namixel baud rate of 1 Mbps. The next section 4.5 details the integral@s to be resolved for
this DXL-HAT to work proficiently between the RPi4B and the CM-56

%

to the E-PTC robot as configured so
and cons of different configurations
luding the one using the U2D2 module).
own in Fig. 4.39. It uses a passive-cool-
e lightest) configuration available at the

4.5 Using DXL-HAT and Dynamixel SDK

First, there was the issue of how to mount the DXL-
far (see Fig. 4.18). Section B.9 has more details on t
tested out by the author which are not repeated hgl2

The “final” configuration used for the current project i
ing case for the RPi4B as the most compact
time of writing of this book.

‘ O’ Fig. 4.39 Passive-Cooling case for the RPi4B and DXL-HAT.

The second issue was how to “appropriately” control the X1.430s, IMU, DMS-80s and Pi Cam-
era used by the E-PTC robot. This issue turned out to be more multi-faceted that the author ex-
pected when he first worked on this issue.

12

Section 1.4 in Vol. 1 described the main features of the ROBOTIS Dynamixel Network used in
their robotics kits. This network is hierarchical, meaning that there can be only ONE Top Control-
ler in this DXL Network. However, the author wanted/needed a “split” system whereas the Pan-
Tilt platform and the Pi Camera are to be controlled by the RPi4B, while the Wheeled Platform and
IMU+DMS-80 sensors remained under the control of the CM-550.

This “split” Dynamixel Control scheme is conceptually described in Fig. 4.40: ‘Q

a) Asingle Li-Po battery (and a 12V-5V converter) provides power to both “CM-550” a
“RPi4B” Dynamixel Networks to provide a common electrical ground level for e-
vices which is mandatory for all communications packets to propagate “reliably” n
this split network. g)

b) The CM-550 controls DXLs (1, 2, 3, 4) and the IMU+DMS-80 sensors as previously
done, via TASK and MicroPython programming. The CM-550 also mai BT con-
tact with a Desktop PC via its UART Port and a BT-210. The CM-55 tionally can
receive Remocon packets from the RPi4B via a USB cable (Micro—l%;&ort on the CM-
550 and ttyACMO Port on the RPi4B). Q

0

“Split” DXL Control LiPC Battary

= P L
.}3,‘&:---""' % 12V
----I *
-
5V 12V-5V =
Converter Remocon Packets %
. *
Controls IDs=5,6 Vi lilSB:cTslg)able : ~IMU
: s tty
& Pi Camera 3
Pi4B IEEEEESEEENEN llllll""" CM—SSO ",
4B ¥, * DMS-80
Dynamixel Function & Pi Camera

Dynamixel Function .
L |

Calls via TASK or o

MicroPython codes .

Calls via DXL SDK .)
(Python or C/C++) ‘:40'P|n GPIO

& ttySO @ 1 Mbps v"

RPi-HAT
B

L]
P

| Dynamixel

XL430 (ID=5,6)

L}
L]
L
B
L}
£
L |
N
]
&5
Network | 4

XL430 (ID=1,2,3,4)

.....Il.....I.Ill.l...-.'llllll-lIl

QQ 48.40 “Split” Dynamixel Control Scheme used for the E-PTC Robot.

0] is Split Control scheme was implemented, the author started to check the performances
of the DXL-HAT with the Dynamixel SDK, using Python and C++ examples provided by ROBOTIS
for the RPi series. Unfortunately for Python fans, “sync_read_write” procedures worked reliably
only at 115.2 Kbps or lower in Python codes (at least on the author’s RPi4Bs). This issue could be
resolved in future releases of the 64-bit Raspian OS which is still in the Beta Phase at the time of
writing for this book (September 2021).

13

However, using C++ codes, the author could get the DXL-HAT to perform reliably at 1 Mbps
(i.e., at Dynamixel Bus rate). Thus, for the remainder of this Section 4.5 only a C++ project is
showcased.

4.5.1 RPi4B as Vision Processor/Remote Controller

This C++ project aimed at integrating previous features such as Manual Remote Control(RC),
Smart Avoider (SA) and Visual Servo Ranging (VSR), but they will be organized differently. E-

PTC robot now has two operating modes:
1. Inits Manual RC mode, the operator can use the PC keyboard (via VNCWS control

of the RPi4B) to perform the standard UDLR maneuvers for the robotAisin

“commType 0” Remocon packets. However, the CM-550’s Smart A@% feature will
take over if the operator drives the robot into an obstacle on pur he Pi Camera is
not used in this mode. %

2. Inits Autonomous Color Object Tracking mode, the RPi4B tly controls the Pan-
Tilt platform (servos 5 and 6) to track the object using 1 on data provided by the
Pi Camera, while sending “directional” Remocon pacl‘m he CM-550 which controls

servos 1 through 4 to perform the required whee ers for additional tracking ac-
tions. In this mode, the CM-550 should not us rt Avoider feature (i.e., Object
Avoiding) as it would contradict with its curgént Object Tracking mission.

On the RPi4B side, the code solution is called “I
and its CM-550’s co-code solution is called “IDN =

Let us first look at the main features of “IDN_ P!
4.42 through Figs. 4.46, illustrating the setup Q«é
ronment.

Fig. 4.42 describes the initializati&% needed to use the Dynamixel SDK:

e Lines 32-34 define t ’s Control Table addresses that are used in this project:
TORQUE_ENABLE, _ POSITION and PRESENT_POSITION.
e Lines 36-37 deflzé the ata Byte Lengths (4 bytes) used for GOAL POSITION and

_SA_RC_Color_Tracker_RPi.cpp”
2SA_RC_VSR_PCDH_RPi.tsk3”.

_SA_RC_Color_Tracker_RPi.cpp” in Figs.
sage of the Dynamixel SDK in a C/C++ envi-

PRESENT P N, which are needed when setting up for a “sync_write” or
“sync_re ure.
e Line43s at the DXL-HAT is set to 1 Mbps baud rate and Line 44 shows that the
Raspia %tached it to Device “ttyS0” via GPIO connection. The reader/user may
haV a e the ownership rights on ttyS0 once (before running the program
TC SA_RC_Color_Tracker_RPi.cpp” for the first time), using a bash Terminal
suing the following command:
sudo chmod a+rw /dev/ttySO
Q@ Lines 48-56 list other variables defined by the author for this project.

14

31 // Control table address
32 #define ADDR_X_TORQUE_ENABLE 64
33 #define ADDR_X_GOAL_POSITION 116
3¢ #define ADDR_X_PRESENT_POSITION 132
3 | {7 e e Lange 48 int dxl_comm_result = COMM_TX_FAIL;
36 #def}ne LEN_X_GOAL_POSITION 4 49 bool dx1_addparam_result = false;
37 #define LEN_X_PRESENT_POSITION 4 5 | becl dil abinin railt = Palse:
38 // Protocol version 51 int s[2] = {5, 6 }; -
39 ji#define EROTOCOL_VERSION 2.8 52 int dxl_goal position[2] = { 2048, 2048 };
40 1" Dgfa.lr_smmgs 53 uint8 t dxl error = 8;
4 #QEf+ne 0XL1_10 5 54 | uints_t param_goal_position[4];|
42 “Eff”e DXL2_ID 6 55 Int32_t dxI_present_position[2] = { @, @ };,
43 .#def}ne BAUDRATE 1oeapee 56 bool read_present_positions_OK = false;
44 #define | DEVICENAME " /dev/ttyse" v
45 #define TORQUE_ENABLE 1
46 #define TORQUE_DISABLE 0
47 #define DXL_MOVING_STATUS_THRESHOLD 20
57 // Initialize PortHandler & PacketHandler instances
58 dynanixel::PortHandler* portHandler = dynamixel::PortHandler: :getPortHandler (DEVICENANE); // ttySe
59 dynamixel::PacketHandler* packetHandler = dynamixel::PacketHandler::getPacketHandler(PROTOCOL_VERSION);
60 // Initialize GroupSyncWrite & GroupSyncRead instances
61 dynamixel::GroupSynchirite groupSynchirite(portHandler, packetHandler, ADDR_X_GOAL_POSITION, LEN_X GOAL_POSITION);
62 dynamixel::GroupSyncRead groupSyncRead(portHandler, packetHandler, ADDR_X_PRESENT POSITION, LEN_X_PRESENT_POSITION);

Yy
Fig. 4.42 Initialization Steps for DXL-SDK in “IDN_EZ&S;A_RC_CO]Or_Tracker_RPi.cpp”.

709
718
m
12
13
714
715
116
n7
718
19
128
121
122
123
124
125
726

/[Preparing TxData (comm_Type=1) for possible UDLR Remocon commands to adjust wheeled platforn

mp TxData = (1« 14); repare comm Type=1 packet
if ((target_x > @) & (target_x <= X1)) // turn left

{

1

m_LEFT = 1;

TxData |= (m_LEFT << 2); // VRC Button LEFT added with bit-wise OR
data_2_packet(TxData);

write(serl, buffer(TxD_packet, 6)); // send LEFT packet

m_LEFT = @;

|else if ((target_x >= X3) && (target_x <= Res_Width)) // turn rigml

{

}

m_RIGHT = 1;

TxData |= (m_RIGHT < 3); // VRC Button RIGHT added with bit-uise OR
data_2_packet(TxData);

write(serl, buffer(TxD_packet, 6)); // send RIGHT packet

M_RIGHT = 8;

}1 Programming steps used when sending UDLR Remocon packets

Q@%

(track_mode == 1) in “IDN_PTC_SA_RC_Color_Tracker_RPi.cpp”.

4.5.2 CM-550 as Smart Avoider

Let us next look at the companion TASK code “IDN_PTC_SA_RC_VSR_PCDH_RPi.tsk3”, but
only at the main features/changes implemented to deal with the use of “comm_ Type”.

15

The overall Obstacle Avoidance algorithm previously described in Section 4.1.2 is still followed
in this project, except that the execution code for the RC commands and the Obstacle Avoidance
procedure have been moved into their own function to achieve a “cleaner” look for the Main End-
less Loop.

4.6 Desktop PC as Supervisory Controller

In this last project for Chapter 4, the IDN/DXL-HAT version of the E-PTC is used (see

override the RPi4B’s current commands to the CM-550.

Fig. Q
4.39) and the goal is to set the Desktop PC as a Supervisory Controller, meaning that the P&)

4.6.1 Revising Robot Communications Scheme

o

The original overall communications scheme (as shown in Fig. 4.2) had t Xvised into Fig.
4.55 as several communication issues had to solved differently than previo@p anned:

Desktop PC

e
*a
Console ",

Remocon Packets
via BT rfcomm0
(Python/PySerial only

Printing to PC Yo, &

via CM-550's

UART (BT-210) &

COM11 (PC)
C++/Boost ASIO
Python/PySerial

I

Pi Camera
on PC’s side) Rasp@n X
= Function)
-._.. Calls DXL-SDK Packets via D)(LHATr XL430
L r— censesnennt™
e . i
RPi4B §- /XL430
. .
{ ¢ IMU
Remocon Packets " u, - 2
", via USB ttyACMO e, 4
."-, and C++/Boost ASIO Ry CM-550 p--» DMS-80
fa, oo Dynamixel
o ‘.-" Function
.'-.'." Calls

Fig. 4.55 Revised Communi%’onsVScheme used for “PC as Supervisory Controller” Project.

4.6.2 Supervisory T

Fig. 4.59 shows the
bot in its IDN vers
BT connectio

QO

Demonstration for E-PTC

all mechanical and communications configurations for the E-PTC ro-
Please view/review Section B.3 (Appendix B) for setup information for the

ﬁ en the PC and the RPi4B via the rfcommQ device on the RPi4B.

16

BT-210 to PC

Fig. 4.59 Mechanical and Communications Configurations of m (IDN version).

in a coordinated fashion:

e OnthePC, “SC_PTC_A4WP_2BT_ Central _ .
“PTC_Data_Central_PC.cpp”.
e Onthe RPi4B, “IDN_PTC_SA_SC_Cdlor_Tracker_RPi.cpp”.

e Onthe CM-550, “IDN_PTC_SA_RC_WSR/ PCDH_RPi.tsk3/py”.
There is a 5-step procedure that mus’ﬁ,/%wwed when demonstrating this Supervisory Con-

In summary for this Supervisory Control project, there are 4 gograms that need to be executed
(g'” and

trol project (Fig. 4.60): ~

s

“=:{sc_PTC_A4WP_2BT Central BST.py |

PTC_Data_Central_PC.cpp | e i e e e T

E

IDN_PTC_SA_RC_VSR_PCDH_RPi.tsk3/py

Fig. 4.60 Runtime Screen Capture for project “PC as Supervisory Controller” for the E-PTC robot.

17

Chapter 5: Quadruped and its Variants with RPi4B

This Chapter 5 builds on concepts explained and solutions described in Chapter 4, thus‘4he
reader is encouraged to read Chapter 4 if not done so. w
nt

Fig. 5.1 shows the “Enhanced” Quadruped (E-QUAD) used for projects described i Chap-
ter 5:

e An RPi4B, with 8 GB RAM and Pi Camera running on 64-bit Raspia Eﬁsed as a “Co-
Controller” to the CM-550, as per ROBOTIS Dynamixel Network I\igm (see Section
1.4 of Volume 1 (Thai, 2020-a), in which the CM-550 is the “To@ntroller”. This
RPi4B shares into the CM-550’s LiPo battery using a 12V- verter. The RPi4B
communicates with the CM-550 via an OTG (or plain) Uf\@ (Port ttyACMO). The

RPi4B also communicates wirelessly with a Desktop Bluetooth Controller as
Port rfcommO (see Appendix B for more details ab

550, hardware-wise and software-wise). &

12V-5vV

ihg up the RPi4B and CM-

Converter

N

.\“Q:
Q S‘ig. 5.1 “Enhanced” Quadruped with RPi4B and Pi Camera.

QThe CM-550 is further equipped with two DMS-80 sensors via its GPIO Ports 3 and 4
and can communicate with the Desktop PC via a BT-210 connected to its UART Port.
e The reader also needs to make sure that the TASK App is V. 3.1.5 or above for the ex-
ample codes in this Chapter to work properly.
e The MOTION component of TASK 3 will be used more extensively in Chapter 5, thus
the reader is encouraged to review the “TASK 3 Programming Curriculum” manual

18

from ROBOTIS. For a more in-depth description and practicum of the MOTION tool,
please read Chapter 4 of the author’s MINT book (Thai, 2020-b).

Mechanically, this E-QUAD robot is basically the same as the Standard Quadruped robot de-
scribed in the ROBOTIS “TASK 3 Programming Curriculum” manual available at this web link
http://en.robotis.com/model/login.php?url=/pdf project/register.php# (the interested user needs
to register his/her CM-550 Serial Number with ROBOTIS at this web link to be able to downl@

he

this “free” document). But Fig. 5.1 shows that the robot’s top area is now quite “crowded” with
RPi4B, the power coupling hardware and the Pi Camera.

trol/VSR” and “Smart Avoider” projects but as a WALKING robot (in both TASK and MiégoPython
versions of course). But a more interesting development is to add 4 X1.-430s set in wheel mode to
the legs of E-QUAD which then becomes more of an “Articulated 4-Wheel Platforme ¥A3WP). This
A4WP robot can then be configured into several wheel-based travel modes (seé&K .3 and 5.4).

Thus, in this Chapter 5, the E-QUAD robot also has its own version of the E-PTC’s “gual—

Fig. 5.3 Three Possible Modes @ﬁlated 4-Wheel Platform (A4WP) Robot.

A

A4WP-H
(Gorilla)

ig. 5.4 Hybrid Mode A4WP-H, with “walking” front legs and “rolling” rear legs.

19

5.1 Using TASK

The first two TASK projects are described in Sub-Section 5.1.1 and 5.1.2, and both used a USB
cable to link the RPi4B to the CM-550’s micro-USB Port, and a BT-210 to link the Desktop PC to
the CM-550’s UART Port:

1. The first one (Sub-Section 5.1.1) establishes a Dual Control framework so that the CM-
550 can be controlled by either the RPi4B and a Desktop PC, or both at the same time.
This TASK solution is named “QUAD_DRC_VSR_PC_RPi.tsk3”, to be used wit
Motion file named “QUAD_DRC_VSR_PC_RPi.mtn3”.

2. The second one (Sub-Section 5.1.2) adds an Autonomous Obstacle Avoidance ure to
the previous Dual Control framework, and this TASK solution is namedK)

“QUAD_SA_DRC_VSR_PC_RPi.tsk3”, and still using
“QUAD_DRC_VSR_PC_RPi.mtn3”. %
In these example TASK codes, if the reader does not have access to an , he/she can use

a USB cable to connect a Desktop PC to the CM-550’s micro-USB port, t e operator can at
least check out the Manual RC features implemented in these prog&am

5.1.1 Dual Control from RPi4B/Desktop PC %’
The author at first used the Motion Units that ROBOTIS created for its demonstration codes

for the Standard Quadruped but he found they mov robot “too much” so that the color target
could shift out of the Pi Camera’s viewport with just one sthgle Motion Unit being executed (espe-
cially the “turn” moves). To reduce the U-D-L-z otion Amplitudes”, a simple modification pro-

cedure is shown in Fig. 5.5 for the Motion Unit labeled “09-up” (i.e., robot walking forward) and
only for its first Motion Frame (defined at tim ms on the Timeline). The reader can readily
see that the Goal Position values in degr had been reduced in half for the Servo IDs =1, 3, 5,
and 7, while the other servos’ settlng ed the same. These types of modifications roughly
reduce the U-D-L-R “Motion Amph my half.

1. “To Wait or Not To g\fl(for Motion Status Changes?”:

Fig. 5.6 shows the)tandard “Motion Play” procedure that ROBOTIS uses in its provided
demonstratio itten for the Standard Quadruped (and other ENGINEER 1 and 2

robots also) 19procedure would start with taking the user’s input (such as from a Touch

Area — L1 hich is then matched with a given Motion Unit (such as Motion 15 —

Line 17 ext step would “play” this given Motion Unit (Line 183) which would take

the me time to perform. This Play step would also be immediately followed by a
ing unctlon (Line 184).

2. “Motion Speed Changes”

This issue is easily solved as the approach used in the E-PTC’s projects still applies (see Fig.
4.9) with one additional step (see Lines 353 and 366 of Fig. 5.8).

20

344 FUNCTION 357 | FUNCTION

45 { 338 {

346 IF (speed € 150) 359 IF (Speed » 2)

347 { 360 {

348 Speed = Speed + 10 361 Speed = Speed = 1
349 IF (Speed »= 150) 362 IF (Speed <= 20)
350 Speed = 150 363 Speed = 20

351 @ Buzzer Timer = 0.2se 364 @ Buzzer Timer = 0.2se
352 ' Buzzerindex = Sol (10) 365 i Buzzerindex = Re(17)
353 @® MotionSpeed = ed 366 @® MotionSpeed = Speed
354 } 367 }

355} 368 |} x)
fect

Fig. 5.8 “Motion Speed” change procedure used in this book’s “walking” pr(% S.

. \CJ
Figure 5.2 illustrates the issue encountered by the E-QUAD roho it wants to aim the
Pi Camera down, whereas it has to spread its front legs outwar at its front-end is low-
ered relative to its rear-end. Of course, the reverse procedur erformed when it needs
to aim the Pi Camera up. This body-tilting feature nee be€tfective for all Motion

Units of course and it can be achieved by setting the ADJ D OFFSETs of the appropri-
ate servos (ID = 2, 4, 6 and 8 in this case).

3. “Robot Body Tilting to aim Pi Camera”

5.1.2 Dual Control with Autonomous ObstaclgA volrdance

Adding the Autonomous Obstacle Avoidance ¢ ility to the E-QUAD required only minimal
efforts when starting from the previous code’developed for the E-PTC, i.e.,
“PTC_SA_RCSD_VSR_PC_RPi.tsk3” a mbining it with the Walking procedures implemented
in “QUAD_DRC_VSR_PC_RPi.tsk3”, b the solution

“QUAD_SA_DRC_VSR_PC_RPi.tW

5.1.3 Articulated Four- W@ Platform (A4WP-123)

To convert the E-QUQshown in Fig. 5.1 into an “Articulated 4-Wheel Platform” (A4WP-
123), the author remov Frame Part EF25-F12 from all four legs and replaced them with the
“Claw-Wheel” mod g. 5.13), one for each leg, which could be constructed from:

1. One XI30-W250-T actuator.
2. O 5-F14 frame part and one EF25-F24 frame part assembled perpendicularly to
ther.

. eThin Wheel and Rubber Tire from the BIOLOID FP04-F13/F14 Set, available at
‘) this web link (https://www.robotis.us/fp04-f13-f14-4set/). The author preferred this
thinner wheel over the thicker wheel that comes with the ENGINEER Kit 2, because in
certain configurations the thinner wheel is more suitable as a “claw” to enhance “walk-

ing” maneuvers (see Fig. 5.4).

21

o XLA30-W250-T

orwse.)

>

Fig. 5.13 “Claw-Wheel” Module used in A4WP based robots.\
5.1.4 Hybrid A4WP (A4WP-H) \QO

Although the Hybrid A4WP (A4WP-H) uses the same parts as theﬁ al AAWP-123 robot, Fig.
5.14 shows that their assembly configurations are quite differepf fromr€ach other. The A4WP-123
robot uses a central symmetry theme for its 4 legs, while the A4AWR-H uses an anti-symmetry theme
for its 4 legs: for example, frame parts EF25-F14 and EF2§-F24 can be in-line or perpendicular to
each other, and the wheels can be mounted on the outside orinside of the actuators.

Furthermore, the A4WP-H robot has “walking”
esting feature is that the “Walking” Motion Units ¢reatedfor the Original Quadruped’s 4 legs can
still be used with the A4WP-H robot via an undo ted Parameter located at Address 1016 +
ID that can “decouple” the rear legs from thetgffects of the Motion Units that were “originally”
moving them. The solution to this projecjsi e&p@d “A4WP-H_DRC_VSR_PC_RPI.tsk3/mtn3”.
In this example TASK code, if the rea@ot have access to an RPi SBC, he/she can use a USB

1

gs and “rolling” rear legs. The inter-

cable to connect a Desktop PC to the
check out the Manual RC features

50’s micro-USB port, then the operator can at least
ented in these programs.

5.2 Using MicroPython \C:o

This section is writt icroPython coders who did not read Section 5.1 (but if the reader
did study Section 5.IK etting here, please bear with some “unavoidable” information repeti-
tions).

Section 5.2 ibes MicroPython projects involving the E-QUAD robot (Fig. 5.1) and its vari-
ants: A4WP-QF' .5.3) and A4WP-H (Fig. 5.4). Two Motion Control techniques will be show-
cased:

< 1.)Using MTN3 Motion files — In Sub-Section 5.2.1, the E-QUAD robot is used to demon-
strate this technique which has its origin from its TASK equivalent. Two MicroPython
projects are described: the first project establishes a Dual Control Framework (Manual
RC from RPi4B or CM-550 Autonomous Color Tracking using Pi Camera attached to
RPi4B), and the second one added an Obstacle Avoidance feature to the first. Their re-
spective solutions are named “QUAD_DRC_VSR_PC_RPi.py” and
“QUAD_SA_DRC_VSR_PC_RPi.py”.

22

2. Using Time Control and Motion Arrays — In Sub-Section 5.2.2, the second E-QUAD
project “QUAD_SA_DRC_VSR_PC_RPi.py” is re-written to use Time-Control, as an
example for how to convert between the two control techniques
(“TC_QUAD_SA_DRC_VSR_PC_RPi.py”). Next the Time-Control technique is fur-
ther applied to the A4WP-123 and A4WP-H robots, resulting in the solutions
“A4WP_DRC_VSR_PC_RPi.py” and “A4WP-H_DRC_VSR_PC_RPi.py”.

RPi’s ttyACMO
USB OTG cable

5.2.1 Using MTN3 Motion Files (\,{\
s

The Motion file used in Sub-Secti%. is “QUAD_DRC_VSR_PC_RPi.mtn3”, which is the
same one described at the beginniﬂ/ -Section 5.1.1 (please review if needed).

The solution for the Dual Control Framework project is named
“QUAD_DRC_VSR_PC_RPiKJ d only the main programming features will be further elabo-
rated on in this Sub-Sectigne

Fig. 5.29 describgs % cedures used in Part 1 of the Main Endless Loop (Main Algorithm):
f

e Linel77% the CM-550 has received a new Remocon packet from the PC. If this
event gens, the Function re.received() would return TRUE, then this big IF struc-
tur tered at Line 178, where Function re.read() extracts from the Remocon packet

udl data component and saves it in Parameter data_in. Parameter data_in has
Itiple components embedded in it and this structure was previously described in
‘ jSub-Section 3.4.1 of Thai (2020-a) (please review if needed).
Line 179 extracts Parameter comm_Type from data_in and shifted it right 14 bits (to
its proper bit position).

e Next, starting at Line 181, the steps are to extract out current information on various
RC BUTTONSs “U-D-L-R-1-2-3-4-5-6" (Line 182 to Line 191).

e Ifdata_in turns out to be zero, this means that the operator just releases all keys on the
keyboard attached to the RPi4B (Line 192), then the robot needs to stop (Line 193).

23

Function stop() is displayed at the bottom right of Fig. 5.29 (Lines 41-43). At the time
of writing of this book, the Function motion.status() was not working properly for the
author, but a direct call to its address was working, thus the use of etc.read8(68) in Line
42. This IF conditional statement checks to see if the robot MOTION STATUS is
FALSE (meaning that it is not performing any motion). So, if the robot happens to be
still, then it is commanded to play MOTION 1 (Line 43) which will put the robot into ijf

Ready pose.

| while True:

=p if (rc.received() == True):

Fig. 5.30 describes the pr@‘es used in Part 2 of the Main Endless Loop:
If data_in != smgeLSE branch on Line 194 is taken, and a big IF-ELSE-IF structure

data_in = d
comm_Type = -1

data_in = rc.read()

comm_Type = (data_in & ©@xcee) >> 14

=p if (comm_Type == 8)

.

forward = data_in & rc.BTN_U
backward = data_in & rc.BTN_D
left = data_in & rc.BTN_L

right = data_in & rc.BTN_R
tilt_up = data_in & rc.BTN_1
tilt_down = data_in & rc.BTN_3
slide_left = data_in & rc.BTN_2
slide_right = data_in & rc.BTN_4
faster = data_in & rc.BTN_5
slower = data_in & rc.BTN_6

if (data_in ==
stop()

| 4
Fig. 5.29 Part 1 of Mai’fvhbss Loop in “QUAD_DRC_VSR_PC_RPi.py”.

is processed

Q):

A

def stop():
if (etc.read8(68) == 0):
motion.play(1)

Thus, depending on which RC Button among UDLR123456 is

Y

pushed e (see Fig. 5.29), a specific action will be executed next — for example
go_fo () or right_slide().

Fo ple, if Up Button is pushed, Parameter forward would be positive, and Func-
ti _forward will be called and thus MOTION 2 will be played (Line 47).

QO

24

C

else:

if (forward > 0):
go_forward()

elif (backwar‘d > @): 4 def go_forward():
go_backward() if (etc.read8(68) == 0):

elif (left > @): 47 motion.play(2)
turn_left() 4

elif (right > 0): 19 def go_backward():

if (etc.read8(68) == 0):
motion.play(3)

O

turn_right()
elif (slide_left > 0):

~ left_slide() 3 def left_slide():
elif (slide_right > 0): - if (etc.read8(68) == 0):
right_slide() 3 motion.play(4)
elif (tilt_up > @): 5
—) Up_tilt() 7 def right_slide():
elif (tilt_down > ©8): 58 | if (etc.read8(68) == 0):
—> down_tilt() 5 motion.play(5)

elif (faster > 0):
=P increase_speed()
elif (slower > 9):
==p decrease_speed()

: y
Fig. 5.30 Part 2 of Main Endless Loop in “Q DRC_VSR_PC_RPi.py”.

Fig 5.31 provides a closer look at what happe@e Function up_tilt() is called:

Line 81 shows that an “up_tilt” operatiof essentially means to increase Parameter
tilt_ offset by 10, each time th ction up_tilt() is called.

Lines 82-84 make sure that tilt_loffset will not exceed hi_tilt (= 450) (Lines 82-83).
When this upper limit is rﬁ an audible alarm will be heard (Line 84).

Lines 85-86 effectively, ing” (Line 86) as long as Address 68 (i.e., Motion.Sta-
tus()) reads 1 (= TRUE% other words when the robot was moving. This step is to
prevent the code fr etting servo offsets if the servos are still in motion.

When it is assure the robot is no longer moving, this WHILE Loop will exit to
Line 87 and Wn set_tilt_offset() is called.

%

As mple, let us say that up_tilt() was called first, then it called set_tilt_offset().
cfse, Global Parameter tilt_offset most likely is positive so the ELSE block
97-101) would apply. Thus, a 0 Offset is set to Servos 2 and 4 (corresponding to
the robot’s front legs) and a negative Offset is set to Servos 6 and 8 (corresponding to
the robot’s rear legs). Physically, the front legs would then keep their “normal gait”
when performing prescribed motions, while the rear legs would “spread out” more
when performing their motions. Therefore, the net result is the lowering of the rear

body with respect to the front body, so the robot would be “tilting up”!

[]
Fig 5.31 also s @he steps implemented when Function set_tilt_offset() is called:
e%

25

e Lastly, Address 199 is checked to make sure that these Offset values are properly writ-
ten into their memory locations on the CM-550, before exiting Function set_ tilt_off-
set(). Regarding Line 103, the author did not see any outwardly difference in the robot
behavior whether Line 103 is enabled or not.

79 def up_tilt():
80 global tilt_offset, hi_tilt(=450)
81 tilt_offset += 10
82 if (tilt_offset > hi_tilt): V
83 tilt_offset = hi_tilt
84 alarm()
=p while(etc.reads(68) == 1): %
delay(@) O

=P set_tilt offset()

Y,

89 def set_tilt_offset():
90 global tilt_offset
print('Tilt_Offset = ', tilt_offset)
92 if (tilt_offset <= 0):

etc.writel6(268, tilt_offset) (Servo 2)
etc.writel6(272, tilt offset) (Servo 4)
etc.writel6 (276, 9) (Servo 6)
etc.writel6(280, 0) (Servo 8)
7 else:
etc.writel6(268, @) (Servo 2)
etc.writel6(272, ©) (Servo 4)
100 etc.writel6(276, -tilt_offset) (Servo 6)
101 etc.writel6(280, -tilt_offset) (Servo 8)

104 ==p while (etc.read8(199) != False):
105 delay(@)

) 4
Fig. 5.31 Functions up&@ and set_tilt_offset() in “QUAD_DRC_VSR_PC_RPi.py”.

Let us look next at e robot handles Object Tracking data coming over from the RPi4B
(Figs. 5.32 and 5.33),AEaeh time that the RPi4B is successful in tracking down a Color Object via
its Pi i consecutive Remocon packets, each for the following types of data (review
ai (2020-a) if needed):

e g o)%‘v : pixel column location of Barycenter of Color Object.
(object Y: pixel row location of Barycenter of Color Object.
e)Object_Area: pixel area of Color Object.

At the bottom right of Figs. 5.32 and 5.33 is a small picture describing various screen coordi-
nates that define different “action zones” for the robot. The robot’s goal is to keep the barycenter
of the Color Object within the box defined by the four object_ WX parameters.

Fig. 5.32 lists the first and second sets of event-action pairs used to maneuver the robot into
keeping the Color Object centered and with a given pixel area size:

26

e Line 252 shows that the CM-550 will only use the Color Object data when it is not mov-
ing, i.e. when (motion.status() == FALSE).

252 if ((object_Area > 0) and (object X > @) and (object Y > 8) Iand
25- (VSR_Control == True) and (motion.statJ;?) == False)):
if ((object_Y < res_Height) and (object Y >= object_WD)):
down_tilt()

elif ((object_Y <= object_WU) and (object Y » 9)): V
up_tilt()
elif ((object_Y > object_WU) and (object_Y < object_WD)):
[etc.write8(199,3) Al S
while (etc.read8(199) != 0): : =
delay(0) H object WL

AT 123l

abject WR

if ((object_X > x1) and (object_X <= object WL)):

object_wu i -
left_slide() object WD

elif ((object_X >= object_WR) and (object X < x3)): Resreigh |
right_slide()

|
Fig. 5.32 Part 1 of Handling Procedures for Color Object WADDRCVSRPCRPi.py”.

¢ Lines 254-255 show that when the Color. is found below the object_WD horizon-
tal line, the robot ought to tilt down itybody/eamera.

e Lines 256-257 show that when the Co ject is found above the object_ WU horizon-
tal line, the robot ought to tilt up its body/camera.

e Lines 258-261 show that whe %’or Object is found within the “blue box”, the ro-
bot ought to clear all its off: ro (i.e. send a 3 to Address 199 — Line 259) and

then wait a bit for this pr o'finish (Lines 260-261).
e Lines 263-264 show th%
t

the Color Object is found within the two vertical lines
defined by x1 and objec , the robot ought to “slide left”.

e Lines 265-266 Sh%e t when the Color Object is found within the two vertical lines

defined by x3 % ject_WR, the robot ought to “slide right”.

[]
Fig. 5.33 lists t t of event-action pairs used to maneuver the robot into keeping the
Color Object centetedand with a given pixel area size:
o Li 69-270 show that when the Color Object is found to the left of vertical line x1,
ot ought to “turn left”.
es 2

71-272 show that when the Color Object is found to the right of vertical line x3,
the robot ought to “turn right”.
e Lines 273-274 show that when the Color Object size is found to be within its Low and
High limits, the robot ought to “stop”.
e Lines 275-276 show that when the Color Object size is found to be larger than its High
limit, the robot ought to “go backward”.

27

e Lines 277-278 show that when the Color Object size is found to be smaller than its Low
limit, the robot ought to “go forward”.

if ((object X > 9) and (object_x 4= X1)):

7 turn_left()
271 elif ((object X »= x3) and (object X <= res_Width)): ()
272 turn_right()|
elif ((object_Area >= object Area_Low) and (object Area <= object_Area_High)):¢
stop() Xl X2 3

275 elif ((object_Area > object Area_High)): ghjest X |

TR Res_Width —
go_backward() |
elif ((object_Area < object_Area_Low)): £ .
go_forward() # objec]:_WLEObjecLWR;
Ohjeﬁt_W'U.
o object WD
Res_Heigi‘ét

L4
’ y
Fig. 5.33 Part 2 of Handling Procedures for Color Ob@ta in “QUAD_DRC_VSR_PC_RPi.py”.

Please note that for each iteration of the Main Endless Loop, the robot could trigger from none

to all three of the three sets of event-action,pairs listed in Figs. 5.32 and 5.33, because 3 separate
IF-ELSE-IF structures were used. (i)

The solution for the Obstacle Ayaqi (SA for Smart Avoider) project is named
“QUAD_SA_DRC_VSR_PC_RPi.(?3% only the main programming features will be further

elaborated on in this Sub-Section.
Fig. 5.34 describes the ne@ables, objects and functions needed to implement the SA fea-
ture:

ence.
e Thet &w object instances are nir_left and nir_right (Lines 177 and 178) — for

DMS;:805.
. néw functions were also needed:
oY reg_stop(): to play Motion 0, i.e. to stop the robot after playing of current Mo-
O

e The new VK% are threshold_1, threshold_2, threshold_3, obstacle, and nir_ differ-

tion to its end.
emer_stop(): to play Motion -3, i.e. to stop the robot “immediately”, at whatever
pose it happens to be it at the time Motion -3 is invoked.

o success(): to call reg_stop(), play the buzzer and reset Parameter obstacle back
to FALSE.

28

173 threshold_1 = 550
174 threshold_2 = 475
75 threshold_3 = 400

/6 obstacle = False

7 nir_left = OLLO(3, const.OLLO_DMS) 150 def reg_stop():
nir_right = OLLO(4, const.OLLO_DMS) motion.play(®)
79 nir_difference = @ delay(1600)

def emer_stop():
motion.play(-3)
delay(10080) V

def success():
global obstacle
reg_stop() L
buzzer.melody(3)
buzzer.wait() o
1€ delay(20080)
164 obstacle =\l:a!lse
Fig. 5.34 New Variables, Objects and Functions needed for implemer@ SA feature in

“QUAD_SA_DRC_VSR_PC_RPi.py’.

AO

[T N T
| N
00
iy

= e
w N

f

LT -

(VT Y, TRV, IV IV, T

E

(Vs
o0

h (
b

N

et e e el
(o p Mo L o e A TV) IV
@ W

202 If 1 C f t Lo f Iser's RC : C

203 if ((nir_left.read() < threshold_1) and (nir_right.read() < threshold_1)):

204 data_in = @

205 comm_Type = -1

206 if (rc.received() == True):

321 else:

323 obstacle = True

324 1 eg_stol

325 emer_stop()

327 while ((nir_left.read() > threshold_2) or (nir_right.read() > threshold_2)):

328 nir_difference = nir_left.read() - nir_right.read()

329 if ((nir_difference <= 10) and (nir_difference »>= -10)):

330 go_backward()

331 while ((nir_left.read() > threshold_3) and (nir_right.read() < nir_left.read())):
332 turn_right()

333 while ((nir_right.read() > threshold 3) and (nir_left.read() < nir_right.read())):
334 turn_left()

D W W W

success()

2
33
3

whilé.((ré.;eceived() ==“True))é
delay(1)
Fig. 5.35 New Procedure for implementing SA feature in “QUAD_SA_DRC_VSR_PC_RPi.py”.

w W W
® O

B

Fig. 5.35 shows that the Main Endless Loop was modified to accommodate the SA feature:

29

e Line 203 shows that if both NIR Sensors read in values less than threshold_1, that
would be considered as “no obstacle is found nearby”, then the procedures for pro-
cessing Remocon packets of comm_Type 0 and 1 are activated as before for
“QUAD_DRC_VSR_PC_RPi.py”.

e When either of the NIR Sensors read in a value larger than threshold_ 1, that would sig-
nify that “some obstacle is found nearby”, the ELSE branch (Lines 321-340) will be exe-
cuted next. ‘ ,

e Parameter obstacle is set to TRUE (Line 323), then the user has the choice of using
reg_stop() (Line 324) or emer_stop() (Line 325). A time delay of 1 sec. is optio@
use (Line 326).

e The OUTER WHILE LOOP (Lines 327-334) is used to figure out the exact 1W of
the obstacle and perform the appropriate robot maneuvers to steer it clea%nough) of

threshold_2, this would mean that the obstacle is “still ne robot, there-
fore the robot needs to figure out and perform the appropriate maneuvers to get
it away from the obstacle.

o Lines 328-330 are used to figure out if the obstacl ated right in front of
the robot, if it is so, it needs to go backward e .

o The first INNER WHILE LOOP (Lines 331—%’used to figure out if the ob-
stacle is located to the left of the robot,“@ so; it needs to turn right (Line

3

the obstacle: R Q
o Line 327 indicates that when either NIR Sensor registeriéﬁ gger than

332).

o The second INNER WHILE LOOP (Li 3-334) is used to figure out if the

obstacle is located to the right (C\/ obot, if it is so, it needs to turn left (Line

334).

e When the OUTER WHILE LOOP is exited; meaning that the NIR Sensors register “all
clear”, Function success() (Line Z%S called to stop the robot, plays the buzzer and
resets Parameter obstacle to SE.

e Thelast WHILE LOOP (Li ~340) is used to wait on the operator to release all
keys on the keyboard a d to the RPi4B.

Ideas for further explorgti mFE 5.1):
5.2.1: The reader may e the condition (motion.status() == False) from Line 252 in
Fig 5.32 to see if the F runtime performance would improve? Or maybe it would get

worse? N
2]

5.2 Using Time Control and Motion Arrays

For the X1430 series, the Time Control option needs first to be set in the EEPROM Parameter
“Drive Mode” (Address 10 and Bit 2 = 1, please review beginning of Section 2.2 of Thai (2020-a) if
needed). When in a Time-based Position Control mode, the parameters “Profile Velocity” (Address
112) and “Profile Acceleration” (Address 108) are still used to set up the “Velocity Trajectory” (VT)
and “Position Trajectory” (PT), but they will have a completely different meaning: their numerical
values represent “milliseconds” in a TIMED Position Control mode.

30

The link http://emanual.robotis.com/docs/en/dxl/x/2x1430-w250/#profile-velocity112 has
some information about the TIMED Position Control (PC) option, but it is not complete. In actual-
ity, the TIMED PC option can accommodate a RECTANGULAR or a TRAPEZOIDAL profile in a
similar way as for the “regular” PC Mode 2 and 3 (please review Section 2.2 of Thai (2020-a) if
needed).

5.3 Using Python on RPi4B/Desktop PC Q

This Section 5.3 is common to TASK and MicroPython coders and it uses Standard Pytw
should be read after either Section 5.1 or 5.2 had been studied. The two projects descriied in this
section implement the overall communications scheme developed for E-PTC in Fig. 4.2 butHere
adapted for E-QUAD and its variants:

1. The first project is developed for the RPi4B, equipped with the Pi C& @ to work as
Vision Processor and Remote Controller for the E-QUAD robot us@e keyboard
from the Desktop PC via VNC Viewer into the RPi4B.

2. The second project is designed to allow the Desktop PC to Central Data Hub
receiving various sensors and actuators data from the E- nd its variants.

The Standard Python solution to this project is na
“QUAD_RC_Color_Tracker_XY_RPi.py” and it is vi identical to the E-PTC’s solution
named “PTC_RCSD_Color_Tracker_XY_RPi.py@ b-Section 4.3.1), except for the use of the

5.3.1 RPi4B as Vision Processor/Remote Controller

keyboard (see Fig. 5.55). Thus, the materials proyided/in Sub-Section 4.3.1 will not be repeated

here — please review if needed. \
N,

74 messagel = "Use keyboard to perform various operations:"

75 message2 = "ESC to quit program"

76 message3 = "!!! Push on s or S for Emergency Stop of Robot"

7 |nessaged = "U-D-L-R Arrows to move Robot / 1-3 for Body Tilting / 2-4 for Sliding Left or Right"
/8 message5 = "5 to Increase Robot's Speed / 6 to decrease Robot's Speed”

79 message6 = "E or e for EXTRACTION of COLOR data for NEW OBJECT"

30 message7 = "T or t to track for CHOSEN OBJECT and put Robot into VSR actions”

81 message8 = "\t Once in TRACK Mode, press R or r to quit Robot's VSR actions"

QQ 955 Keyboard Usage in “QUAD_RC_Color_Tracker_XY_RPi.py”.

T ogram “QUAD_RC_Color_Tracker_XY_RPi.py” is designed to work with the previously
developed MicroPython codes “QUAD_DRC_VSR_PC_RPi.py” or
“QUAD_SA_DRC_VSR_PC_RPi.py” (Sub-Section 5.2.1) or
“TC_QUAD_SA_DRC_VSR_PC_RPi.py” (Sub-Section 5.2.2).

At runtime, the reader certainly would notice that “QUAD_RC_ Color_Tracker_XY_RPi.py”
does not perform as well as “PTC_RCSD_ Color_Tracker_XY_RPi.py”. The main reason is that a

31

“walking” robot such as E-QUAD does not provide a very stable platform for tracking a moving ob-
ject as compared to a wheel-based robot such as the E-PTC. Furthermore, Fig. 5.32 shows that all
3 CM-550 side codes use Object Tracking Data, sent over from the RPi4B, only when the E-QUAD
is not moving (i.e. motion.status() == False). This means that the E-QUAD robot receives infor-
mation about its “environment” much less often than the E-PTC robot, and this slower information
flow undoubtedly induces a slower reaction rate for E-QUAD. For this reason, the author designe
the A4WP-H variant as a mixture of “walking” and “rolling” control for use in Sections 5.4 and 5/
as an effort to improve object tracking performance with “walking” robots. V

5.3.2 Desktop PC as Central Data Hub V

In this Sub-Section 5.3.2, a self-standing Python program emulates the Output l\%itor func-
tionality of the ROBOTIS TASK tool, and its name is “QUAD_ Data_ Central_P€.p§ .)It is virtually
identical to the E-PTC’s solution named “PTC_Data_Central_PC.py” (see Su on 4.3.2), ex-
cept for the use of different key presses and robot images (see Fig. 5.56). T e materials pro-
vided in Sub-Section 4.3.2 will not be repeated here — please review if %

-

messagel = "Use keyboard to perform various operations:"
message2 = "ESC to quit program"

message3 = "Toggle Key Q ON/OFF for Quadruped’'s data flow" <=
im_QUAD _ON = "Quadruped_On_S.jpg" =
im_QUAD_OFF = "Quadruped_Off_S.jpg" <=

window_1 = "Quadruped"

robot_1 = False
received_line_1 = ©

Fig. 5.56 Keyboard arf»&&{ Usage in “QUAD_Data_ Central_PC.py”.

5.4 Using C++ on RPi4B and op PC

This Section 5.4 is coﬁgy 0 TASK and MicroPython coders and it uses Standard C++. It
should be read after git ction 5.1 or 5.2 had been studied. The two projects described in this
section implement t &/ 1 communications scheme developed for E-PTC in Fig. 4.2 but here
adapted for A4WP.

1. Thefir ject is developed for the RPi4B, equipped with the Pi Camera, to work as Vi-
sion sgor and Remote Controller for the A4WP-H robot using the keyboard from the

e@p via VNC Viewer into the RPi4B.
2{ The Second project is designed to allow the Desktop PC to work as a Central Data Hub re-
fving various sensors and actuators data from the A4WP-H.

On the CM-550 side, the codes “A4WP-H_DRC_VSR_PC_RPi.tsk3/mtn3” (Sub-Section 5.1.4)
or “A4WP-H_DRC_VSR_PC_RPi.py” (Sub-Section 5.2.2) can be used with these two projects.

32

5.4.1 RPi4B as Vision Processor/Remote Controller

The solution for this A4AWP-H project is named “A4WP-H_RC_ Color_Tracker_RPi.cpp” and it
is virtually identical to its E-PTC equivalent “PTC_RC_Color_Tracker_XY_RPi_BST.cpp” (see
Sub-Section 4.4.1). The only difference is only in the way that certain key presses will now point to
difference robot actions (see Fig. 5.57).

248 // Print out simple menu Q

249 cout << "Use keyboard to perform various operations:" << endl; ’/)
250 cout << "ESC to quit program" << endl;

251 cout << "!!! Push on s or S for Emergency Stop of Robot" << endl;

252 cout << "U-D-L-R Arrows to move Robot /|1-3 for Body Tilt / 4 for Robot Reset“|<< endl;
253 cout << "5 to increase Robot Speed / 6 to decrease Robot Speed” << endl;

254 cout << "E or e for EXTRACTION of COLOR data for NEW OBJECT" << endl;

255 cout << "T or t to track for CHOSEN OBJECT and put Robot into VSR actions" << endl;

256 cout << "\t Once in SCAN Mode, press R or r to quit Robot's VSR actigns" << endl;

Fig. 5.57 Keyboard Usage in “A4WP-H_RC_Color_Tr6\@RPi.cpp”.

5.4.2 Desktop PC as Central Data Hub ,;
The solution for this A4WP-H project is named “A4WP- ata_Central_PC.cpp” and it is vir-
tually identical to its E-PTC equivalent “PTC_Data__ PC.cpp” (see Sub-Section 4.4.2). The

only difference is only in the images and key pres@ re now used (see Fig. 5.58).

A
56 // OpenCV Init Section
57 Mat img_1, img_2, img_3;
58 key 1 = 0;
59 key 2 = ©;
60 const char* im_A4WP_ON = "A4WP-H_On_S.jpg"; [/ 302x3@2 pixels
61 const char* im_A4WP_OFF = "A4WP-H_Off_S.jpg";
62 const char* window_1 = "A4WP-H';
63
64 // Create Windows
65 img_1 = imread(im_A4WP_OFF);
66 imshow(window_1, img_1);
67 moveWindow(window_1, @, @);
68
69 // Print out simple menu
‘76 cout << "Use keyboard to perform various operations:" << endl;

71 cout << "ESC to guit program" << endl:
72 cout <<|"Toggle Key (a) ON/OFF for A4WP-H's data flow"|<< endl;

Fig. 5.58 Keyboard and Images Usage in “A4WP-H_ Data_Central_PC.cpp”.

33

5.5 Applying IDN Concept to A4WP-H with DXL-HAT + DXL-SDK

When the author applied the Independent Dynamixel Network concept to the A4WP-H robot,
interesting mechanical and communications issues arose. From a systems view of the A4WP-H ro-
bot, there is no “Split” DXL Control option like for the E-PTC, thus all 12 X1.430 actuators would
have to be under the control of the RPi4B, leaving the CM-550 to manage its local sensors. Addi-
tionally, the CM-550 needs to communicate to the RPi4B about the status of those sensors so t
the RPi4B can activate appropriate robot maneuvers at runtime. ‘1)

o 7

Thus, for this Section 5.5, the goal is to use the A4WP-H frame to create an Obstacle Agoiding
robot that has all its servos controlled by the RPi4B via the DXL-HAT and using Time-Control e,
while the CM-550 manages the DMS-80 and IMU sensors. y

The C++ solution, running on the RPi4B, is named “IDN_A4WP-H_SA_RC_ _RPi.cpp”,
and the corresponding CM-550 solutions are named “IDN_A4WP-H_SA_RC _RPi‘tsk3/py”.

N
O\'

5.5.1 Mechanical Cabling Issue
First, the IDN version of the A4WP-H robot would need its X3Pl§able system redesigned

so that the CM-550 powers all the X1.430s but cannot see/contyel t . The author’s first design
iteration resulted in a solution that required long X3P cables b%ﬂhe robot legs (see Fig. 5.59).
The robot had no problems performing its required maneuvers, bitt these cables tended to snag on
things off the running surface. &

. -
Fig. irst IDN Cabling Solution for A4WP-H robot.

Fig. 5.61 illust %s}ow the last “regular” X3P cable, connecting one robot leg to the JST bus on
the DXL-HAT s the RPi4B/DXL-HAT to “see” all the XLL430s and thus can control them via
the DXL-SD rough the RPi4B.

QO

34

DXL-HAT

Regular X3P cable

-~
Fig. 5.61 Controlling X1.430s with DXL-HAT/ RP@ WP-H robot.

5.5.2 CM-550 to RPi4B Communications Issue

In all the RPi4B projects so far, the author had b to use Port ttyACMO to send Remocon
packets from the RPi4B to the CM-550. But for ent project, a reverse data flow would be
needed, as the CM-550 needs to send either raw 80 sensor data or appropriate directives to
the RPi4B to tell it about the presence of an bstac in the robot path. The RPi4B can then issue
appropriate maneuver commands to the WQ o that the A4WP-H robot can clear the obstacle.

r

Furthermore, the author wanted ZGB-SDK for this reverse data flow to see if it can
coexist with the DXL-SDK within onment on the RPi4B. So, he recomplled the ZGB-
SDK to use Port ttyACMO and inco@ted it into the C++ solution for this project which then com-
piled fine. However, at runtime, this/tompiled code could not connect to Port ttyACMO for some
reasons. But if the author w@ck to using an LN-101, connecting an RPi4B’s USB Port (i.e.,
ttyUSBO) to the UART P CM-550, the ZGB-SDK connection worked fine between RPi4B

and CM-550! Thus, it lo e that ROBOTIS Software work best with ROBOTIS Hardware!

The RPi4B main t manage the Pi Camera and the Time-Controlled X1.430s via DXL-SDK
and Port ttySO wh &' L-HAT is connected to. The BlueTooth rfcommO device on RPi4B acts
as the wireless nlcatlons link between PC and RPi4B. As previously mentioned in Section
4.6, rfcomm(@r orks with a Python/PySerial code running on the PC.

5@' 'M-550's TASK & MicroPython Solutions

Let us next look at the CM-550 solutions “IDN_A4WP-H_SA_RC_RPi.tsk3/py”. Both versions
implemented the same “logic”, but the author will use the MicroPython version to explain the vari-
ous procedures used. The corresponding C++ code on the RPi4B is named “IDN_A4WP-
H_SA_RC_VSR_RPi.cpp”. Fig. 5.63 lists 4 Functions used in “IDN_A4WP-H_SA_RC_RPi.py”:

35

¢ Function alarm() plays the musical note 3 for 0.5 second (Lines 12-13).
e Function init_com_VSR() sets the use mode for the three serial communication ports on
the CM-550 (please review Fig. 5.62 also):

O

The UART Port (Line 16) is set to “Remote Port” where Remocon packets will be
received or transmitted from. This UART Port is connected to Port ttyUSBO on
the RPi4B via an LN-101.

The App Port is not used in this project, so it is just set to its default use (BLE)
(Line 17).

The Task Print Port (Line 18) is set to BLE which is the Embedded BT-4W€
CM-550, meaning that the PC must be using a BT-410 USB dongle tg con to
the Embedded BT-410 on the CM-550. ‘\}

5.5.4 RPi4B’s C++ Solution \C)

Fig. 5.71 shows a simple menu to indicate the various “robot actions” &e implemented in
the program “IDN_A4WP-H_SA_RC_VSR_RPi.cpp”. Please note th and 4 are not used.

1030
1031
1032
1033
1634
1035
1036
1037
1038
1039
1040

- O
/| Print out simple menu

cout << "Use keyboard to perform various operations:" << endl;

cout << "ESC to quit program" << endl;

cout << "!1! Push on s for Emergency Stop/Freeze of Robot" << endl;

cout << "!! Push on r for Reset to Robot Init Pose" << endl;

cout << "U-D-L-R Arrows to move Robot / 1 for Robot Tilt Up / 2 for Robot Tilt Down" << endl;
cout << "5 to increase Robot Speed / 6 to decrease Robot Speed” << endl;

cout << "E or e for EXTRACTION of COLOR data for NEW OBIECT" << endl;

cout << "T or t to track for CHOSEN OBJECT and put Robot into VSR actions” <« endl;

COUE ¢¢ "eememenenas Press any key to continue" << endl;
getchar();

Fig. 5.71 Simple mer@‘l’n “IDN_A4WP-H_SA_RC_VSR_RPi.cpp’.

QO

C‘O
S
.&\

3

36

23 #include "dynamixel_sdk.h"

24 #include <zigbee.h>

25

26 #define DEFAULT_DEVICEINDEX @ // /dev/ttyusBe for ZGB-SDK

27 #define TIMEOUT_TIME 50 // msec

52 #define BAUDRATE 1000600 G

53 #define DEVICENAME " /dev/ttyse" Q
64 int IDs_GP[8] = {1,2,3,4,5,6,7,8}; // IDs of DXL under Position Control

65 int IDs_GV[4] = {11,12,13,14}; // IDs of DXL under Velocity Control V
66 uint8_t dxl_error = @; // Dynamixel error

67 uint8_t moving_flag = @; // Individual DXL's moving flag x)

68

69 uint8_t param_goal_position[4]; /] byte array for goal position value 8
7@ uint_t param_goal_velocity[4]; // byte array for goal velocity value J
71 int32_t dx1_present_position[8] = { @ }; // Present position array

72 bool read_present_positions_OK = false; ofmm

73 bool wheels_only = false; «fum

uint8_t all_moving_flags = @; // Sum of all moving flags :

N
Fig. 5.72 Selected C++ Definitions used in “IDN_A4WP-H_SA VSR_RPi.cpp”.

Fig. 5.72 shows selected C++ Definitions used in “IDN__ 4&_’SA_RC_VSR_RPi.cpp”:

e This program is using the DXL-SDK (Line 239, andhe ZGB-SDK (Line 24), and that
Port ttyUSBO is used with the ZGB-SDK (Jsi -27), while Port ttySO0 is used with the
DXL-SDK (Lines 52-53). The reader/user may have to change the ownership rights on
ttyUSBO0/ttyS0 once (before running aly executable program, using a bash Terminal to
issue the following commands:

o sudo chmod a+rw /dev, %MO
o sudo chmod a+rw /dev/ BO

e Lines 64-65 list the IDs ar% d in many Functions that set Goal Position or Goal
Velocity commands to ’s X1430 actuators.

e Lines 66-71 lists specificjdata types that are used by the DXL-SDK (coming from
ROBOTIS example sQuce codes).

e Lines 72-73 sho e other author-created variables used in this program.

[]
5.6 Supervisory Con WP-H (and E-PTC)

In this last projectfor Chapter 5, the goal is to set the Desktop PC as a Supervisory Controller,
meaning that can override the RPi4B’s current commands to the CM-550 (see Fig. 5.62).

The Rl@[uld now run on “IDN_A4WP-H_SA_SC_VSR_RPi.cpp” which is modified from
the progra _A4WP-H_SA_RC_VSR_RPi.cpp” (described in Sub-Sections 5.5.3 and 5.5.4)
to in ate a new BT communication channel via rfcomm0 connecting between the RPi4B and
the PC. Please refer to Appendix B, Sub-Section B.3, for more details about setting/using

rfcomm0.

As previously discussed in Section 4.6, the companion PC solution needs to be a Python pro-
gram, and it is named “SC_PTC_A4WP_2BT_Central_BST.py”. This PC Python program is de-
signed to serve as an interface to both E-PTC and A4WP-H robots.

37

5.6.1 RPi4B C++ Solution for A4WP-H

All functionalities implemented in “IDN_A4WP-H_SA_RC_VSR_RPi.cpp” are retained in
“IDN_A4WP-H_SA_SC_VSR_RPi.cpp” and the only new programming features relate to how to
receive and implement the commands from the PC sent to the RPi4B but meant for the CM-550.

The pertinent programming steps in “IDN_A4WP-H_SA_SC_VSR_RPi.cpp” are described in ‘)

Figs. 5.93 to 5.99. V
25 #include "dynamixel_sdk.h" == x)
26 #include <zigbee.h> <=

27 %
28 #define DEFAULT_DEVICEINDEX © // /dev/ttyUsse for 7GB-SDK)
29 #define TIMEOUT_TIME 50 // msec
30
31 -using namespace std;
32 using namespace cv;
33 using namespace ::boost::asio; <=
Fig. 5.93 Selected include packages and definitio d 111 “IDN_A4WP-
H_SA_SC_VSR_RPi.(&{”./
5.6.2 Desktop PC Python Solution for A4WP-H 7C
The companion PC solution “SC_PTC_A4WP{ 2BT Central_BST.py” was already described
once in Section 4.6, but only for the E-PTC robot. ‘®igs. 5.100 to 5.103 will describe the additional

features to accommodate both E-PTC and A4WP-H robots.

Fig. 5.100 lists selected Initializatio % efinitions needed at the beginning of the Python
p

code for “SC_PTC_A4WP_2BT Cent py”:

e On the author’s PC setu%e 109 shows that the BT connection to the E-PTC robot
(btserl) is done via COM14, while the BT connection to the A4WP-H robot (btser2) is

done via COM20 (I 13).
e Lines 144-14 a simple menu for the Operator to use this program.

e Lines 151.-1% arious graphics objects used in this project.

38

109 btserl = serial.Serial("COM14", 115200, timeout=@8, write_timeout=0) *
118 btserl.reset_input_buffer() # clear buffer for data coming in from RF
111 btserl.reset_output_buffer() # clear buffer for data sent to RPi-PT

112

113 btser2 = serial.Serial("COM20", 115200, timeout=@, write_timeout=0) #

114 btser2.reset_input_buffer() # clear buffer for data coming in from Rf

115 btser2.reset_output_buffer() # clear buffer for d sent to RP

144 messagel = "Use keyboard to perform various operations:" ‘)
145 message2 = "ESC to quit program”

146 message3 = "Toggle Key p for PTC or Key a for A4WP"

147 messaged = "Use UDLR123456 keys to control the robot(s) - only 1-key push allowed"

148 message5 = "!1! Push on s for Emergency Stop" V
149 N

158 # OpenCV section o

151 im PTC ON = "E-PTC_RPi_On_S.jpg" # 484x484 pixel:

152 im_PTC_OFF = "E-PTC_RPi_Off S.jpg"

153 im_A4WP_ON = "A4WP-H_On_S.jpg" # 382x302 pixels
154 im_A4WP_OFF = "A4WP-H_Off_S.jpg"

155 window_1 = "E-PTC"

156 window_2 = "AdWP-H"

Fig. 5.100 Selected Initializations and Deﬁnit%%ny@mented in

“SC_PTC_A4WP_2BT_ Central__

5.6.3 Supervisory Control Demonstration for A4WaE-=
Fig. 5.104 shows the overall mechanical and c@ ications configurations of the A4WP-H

AN\

robot in its IDN version.

Embedded
BT-410 to PC

In summary for this A4WP-H Supervisory Control project, there are 4 programs that need to
be executed in a coordinated fashion:

e Onthe PC, “SC_PTC_A4WP_2BT_Central_BST.py” and “A4WP-
H_Data_Central_PC.cpp”.

39

e Onthe RPi4B, “IDN_ A4WP-H_SA_SC_VSR_RPi.cpp”.
e Onthe CM-550, “IDN_ A4WP-H_SA_RC_RPi.tsk3/py’”.

I

PR]

e e =

A4WP-H_Data_Central_PC.cpp E e

Fig. 5.105 Runtime Screen Capture for project “PC q@v?sory Controller”

for the AAWP-H ro&

5.6.4 Supervisory Control Demonstration for -H + E-PTC

As the final demonstration for Chapter 5, we'lluse the PC to control both E-PTC and A4WP-H
robots. Both 5-step procedures shown in Sub-Secti6hs 4.6.2 and 5.6.3 must be combined to syn-
chronize 1 PC, 2 RPi4Bs and 2 CM-550s f?% to work together (see Fig. 5.106):

=) |

e In the top-left of Fig. 5.1064 dow for the Thonny IDE running the program

“SC_PTC_A4WP_2BT _BST.py”.
e At the bottom-left in Fig. 5.1,06 are two “Data Flow” windows, one for “A4WP-

H_Data_Central_PC.cppand the other for “E-PTC_Data_Central_PC.cpp”.
e In the top-middle % an external view via Web Cam of the overall physical set up,
-H robot was tracking a green ball, while the E-PTC robot was

e Inthe righ f Fig. 5.106 are two VNCViewer windows displaying the desktops of
the E-PT.C/ and A4WP-H/RPi4B interfaces.

S

showing that
tracking a bl :
i@

40

5

oo “
AAWP-Heggie, |
= I t-pic

Web Cam View

E-PTC/RPi4B

I
I
I e ;

| Data flow from AGWP-H |t A4WP-H/RPi4B
| L

I
I
I

Fig. 5.106 Runtime Screen Capture for project “PC as Superviso

& oller”
for E-PTC and A4WP-H robots. QWO

A narrated video of about 5 minutes of runtime demonstr Qs project is available on
YouTube (https://www.youtube.com/watch?v=w6YSA-1mQ%s). Both robots behaved as pro-
grammed during the first 3.5 minutes, but afterwards boti'RPi4Bs started to lock up, then the

A4WP-H/RPi4B stopped its VNC Server, thus there wag totakloss of control over the A4WP-H

robot after that event. So, the RPi4Bs were not quit as the author had hoped for, perhaps
because Raspian 64-bit OS is still in its beta phase/curréptly (September 2021).

41

Chapter 6: Enhanced SPI: CM-550 vs. RPi4B vs. Jetson Nano

Fig. 6.1 shows the author’s mechanical modifications to the original design for the SPI r@
which came with the ENGINEER Kit 1:

1. Two additional X1.430-W250-T are used as Servos 15 and 16, and one Fram aMS-
F23 connects them together to work as a Pan-Tilt platform for the Pi Camera.
e

2. Two DMS-80s are also mounted in front of the Frame Part EF25-F23 to se% as’obstacle
Sensors.

Fig. 6.1 Additional Pan-Tilt Platform and DVS-80s for the Original SPI Robot.

This Enhanced SPI (E-SPI) robot is des1 ,}to carry either an RPi4B or a Jetson Nano 2GB on
its top surface, therefore the CM-550 @ 0 battery get shifted to the robot’s bottom area (see

Fig. 6.2). (»

RPi4B or
Jetson Nano 2GB

‘ FOpg 6.2 CM-550 and LiPo Battery shifted to the bottom area of the E-SPI Robot.

The projects for the E-SPI robot have similar goals to the previous robots E-PTC and A4WP-H
robot:

e Mixing Autonomous and Remote Controls schemes.

42

e Use of the SBCs (RPi4B or Jetson Nano) as the Machine Vision Processor.
e Applications of the Independent Dynamixel Networks (IDN) approach to best distrib-
ute the computing load between the SBC and CM-550.

Based on results obtained from Chapters 4 and 5, the author decided that the Pan-Tilt Platform
(Servos 15 and 16) and the Pi Camera would be controlled by the SBC in use, while the Multipedal
Platform and the DMS-80s would be controlled by the CM-550. Q

Three E-SPI projects are presented in this Chapter 6:

1. A camera-less project using only the CM-550 that can be served as a foundationw)e
next two SBC-based projects.

2. A Machine Vision based project using the RPi4B.

3. Another Machine Vision based project using the Jetson Nano. O%

6.1 Camera-less Solution in TASK/MicroPython)0

In this project, all 12 servos of the Multipedal Platform and the 2 che Pan-Tilt Plat-
form are controlled by the CM-550 (see Fig. 6.3):

e The Multipedal Platform’s movements are based o on Units provided in the
ROBOTIS example SPI MTN3 file but modified to suitithe author’s needs.
e The Pan-Tilt platform is controlled via Syncw&)al osition commands.

N
o

1&&g. 6.3 Camera-less E-SPI project using only CM-550.

6.2 Ma i@l n Solution with RPi4B
Inthis)Section 6.2, a Machine Vision solution using the RPi4B is documented:

e The solutions for the CM-550 were created in TASK and MicroPython (see enclosed
source codes), however for “variety” sake, only the MicroPython version
“IDN_SPI_SA_RC_RPi.py” will be described further in this Section 6.2.

e For the RPi4B, Chapters 4 and 5 already showed that a C++ approach was needed to
provide the best runtime performance out of the RPi4B, thus the author did not create a

43

Python version of the RPi4B C++ solution which is named
“IDN_SPI_SA_SSC_VSR_RPi.cpp”.

6.2.1 Hardware/Communication Configurations for RPi4B + E-SPI

Fig. 6.12 Hardware Configuration used for ig}%ﬁn g RPi4B to CM-550.

Fig. 6.12 shows the Hardware Configuration u this project:

e An RPi4B with a compact passive cool stem is used.

e A DXL-HAT is used to allow the RRi4B to control the Pan-Tilt platform and Pi Camera
directly via the DXL-SDK.

e Aplain USB cable is used tp-¢onneet the RPi4B to the CM-550 to allow one-way Remo-
con communications be 14B and CM-550. Thus, the RPi4B only issues high-
level movement comm LR12456” to the CM-550 which takes care of the low-

level Motion Units/Lists agpects to move the E-SPY multipedal chassis, while avoiding
potential obstacles@:e DMS-80 sensors.

6.3 Machine Vision S(@ ith Jetson Nano 2GB
In this Section 643, chine Vision solution using the Jetson Nano 2 GB is documented:
e Th ions for the CM-550 were created in TASK and MicroPython (see enclosed
S cddes), but only the MicroPython version “IDN_SPI_SA_RC_JN.py” will be de-

@1 further in this Section 6.3.

‘ * Chapters 4 and 5 already showed that a C++ approach was needed to provide the
best runtime performance out of SBCs, the author did not create a Python version of
the Jetson Nano’s C++ solution which is named “IDN_SPI_SA_SSC_VSR_JN.cpp”.

6.3.1 Hardware/Communication Configurations for J-Nano + E-SPI

44

Fig. 6.27 Hardware Configuration used for integrating Jetson Nanb -550.

Fig. 6.27 shows the Hardware Configuration used for this projec :

e A standard Jetson Nano 2GB with a 4 GB of swap s is;used (please see Appendix C
for more details).

e A U2D2 module is used to allow the J-Nano to(coutrol the Pan-Tilt platform via DXL-
SDK and an IMX-219 based Camera directly. folks had used the DXL-HAT (de-
signed for RPi only) with J-Nano succes t at this point (August 2021),
ROBOTIS does not fully recommend the use of the DXL-HAT with J-Nano yet.

e The author could have used a plain U le to connect the J-Nano to the CM-550 to
allow Remocon communications tween J-Nano and CM-550. But, for “variety” sake,
he chose the LN-101 instead. /Ahus, 1larly to the RPi4B, the J-Nano only issues
high-level movement com DLR12456” to the CM-550 which takes care of the

low-level Motion Units/Li o cts to move the E-SPY multipedal chassis, while
avoiding potential obstaclés yia the DMS-80 sensors.

6.3.3 J-Nano So]uﬁo@‘SPI SA_SSC VSR _JN.cpp”

The J-Nano soluti DN_SPI_SA_SSC_VSR_JN.cpp” shares the overall logical structure
used in the program PI_SA_SSC_VSR_RPI.cpp”, except now the ZGB-SDK is used instead
of the Boost ASIO SerialPort facility.

the most important Variable and Function Definitions that the reader needs

es 27 and 28 show that the LN-101 and ZGB-SDK use Port ttyUSB1 with a Time Out
constant equal to 50 ms.
Lines 199-206 show how Function send_data() uses ZGB-SDK’s Functions such as
zgb_tx_data() to send Remocon packets to the CM-550.

e Lines 47 and 48 indicate that U2D2 is using Port ttyUSBO set at 1 Mbps, while Lines

208 and 209 confirm that we will be using SyncWrite/SyncRead packets to work with
the Pan-Tilt servos 15 and 16.

45

{557 #define DEFAULT_DEVICEINDEX 1// /dev/ttyUSBl for ZGB-SDK
28

#define TIMEOUT_TIME 58 // msec
199 [void send_data(int message) (A)
00 |{
201 if (zgb_tx_data(message) == @) C)
202 COUT << TFalled o transmit Remocon Packet\n"; ')
203 usleep(5000);
204 stop_once = false;
205 return;

& J

ﬁ #define DXL1_ID 15 // Dynamixel#1 ID: 15 Tilt Ser\h
46 #define DXL2 ID 16 // Dynamixel#2 ID: 16 Pan Servo
47 #define] BAUDRATE 1000000
48 #define] DEVICENAME " /dev/ttyUSBe" // Using U202

208 [Fint sync_write 15 16()
209 |{ (B)

237 [=int sync_read 15 16()
o J

\
Fig. 6.30 Important Variable %1 F%ction Definitions in “IDN_SPI_SA_SSC_VSR_JN.cpp”.

Y

The author made a tut0giabvideo summarizing this project available at this web link

46

Chapter 7: Enhanced MAX-E2 with RPi4B

Similarly, as for the other robots, the author also tried to mount a Pi Camera on a Pan-Tilt
form to enhance the original MAX-E2 robot. The picture on the left in Fig. 7.1 shows the
first solution which used two SM-10 servos which turned out to be unsuitable for object tracki
they were “jittery”, i.e., unable to hold a set Goal Position reliably.

The picture on the right in Fig. 7.1 shows%author’s second and final solution using a 2X1.430
servo:

e The Pi Camera was mount%x(flg Head Piece using a Dummy SM-10, essentially using
the ROBOTIS design fo -E1 (Engineer Kit 1).

e This Head Assembly is thep’attached to the 2X1.430 servo using one frame part EF25-

F23. \i%

7.1 Hardware/Commu '&Conﬁgurations for RPi4B + E-ME2

Building on the
ware configuratio

ces and results gathered from the previous robots, the following hard-
this Enhanced MAX-E2 (E-ME2) robot were implemented (see Fig. 7.2):

e A 14B was used as the Co-Controller to the CM-550, as it was obvious that this hu-
d robot would not be able to keep its balance when a larger Jetson Nano is strapped

@ts ack.
< e JThe orange “backpack” was designed by ROBOTIS and is available for 3-D Printing at
this web link https://www.tinkercad.com/things/cUMNF5A15eh. This YouTube video
has more details about how to mount this “backpack” along with the RPi4B to the back
of this robot (and discussions about other hardware solutions also) -

https://www.youtube.com/watch?v=jjMomyIITHU.

e From the author’s experience with the E-SPI robot, the LiPo battery option won’t work,
as one with enough capacity to run 19 servos and the RPi4B will put the E-ME2 out of

47

mechanical balance. Thus a “tethered-power-cables” option was the only practical solu-
tion.

e As a cooling fan was needed, the DXL-HAT could not be used, so the “lighter” U2D2
module was chosen to control the Head Assembly via DXL-SDK.

e A plain USB cable was used to maintain Remocon communications between the RPi4B
and the CM-550. That leaves the CM-550’s UART Port available for use with a BT-21
if needed. < ’

' | PiCamera

© o 7XL-430 (Neck)
,P

h
| 1y o
,

......

Fig. 7.2 Hardwﬂﬁ?r}wgurations used on the E-ME2 robot.

7.2 Motion Offsets Determin@

The original MAX-E wf comes with an extensive Motions Library, so the obvious goal is to
use/reuse these Motign uch as possible with the “new” E-ME2 robot, which has its Center of
Gravity shifted to ﬂ&r ue to all the new components attached to its backside and topside (Fig.
7.2). From multipleNerials, some successful and some not, the author recommends two essential

steps:
1. &aﬂ servos back to Factory Settings using the MANAGER tool, as they had been
dified by the previous projects described in Chapters 1 through 6, also recognizing
that the provided Motion Units were created under Factory Reset conditions. The user
needs to perform this step with the robot safely lying face down on a level surface to
prevent possible damage to the robot.

2. The author found that Motion Unit 1 (Ready Pose) is the best one to use for determining
the proper Motion Offsets values to bring the E-ME2 robot “back into balance”, statically
and dynamically. The ROBOTIS e-Manual has some basic instructions for this task at
https://emanual.robotis.com/docs/en/software/rplustask3 /useful tips/#edit-offset.

48

7.3 CM-550 Solution in TASK/MicroPython

In this project, 17 servos of the XL.430 type are to be controlled by the CM-550 (see Fig. 7.3).
Motion Units provided in the ROBOTIS example MAX-E2 MTN3 file will be used/modified to suit
the author’s needs. The author created both TASK and MicroPython solutions, but only the Mi-
croPython version “IDN_ME2_RC_RPi.py” will be described in this Section.

Fig. 7.6 lists the programming steps used for the familiar Functions init() and
init_comm_VSR(), and the key modifications were:
e Line 13 sets the IMU to its “vertical” orientation. V
e Line 14 sets the UART Port to 115.2 Kbps. V
e Line 28 sets the CM-550 to expect Remocon Packets through its USB Port
[)

Line 30 sets the CM-550 to send Task Print outputs to its UART Port. %
X
x\y
def init():

dx1bus.torque_off()
for i in range(1, 18):

DXL(1).write8(10, 0)

DXL(i).write8(11, 3)
DXL(200).urite8(15,)
DXL(200) .write8(13, 2)
dx1bus.torque_on()

speed = 70 27 def init_comm VSR():

motion.speed(speed) lEEL(Z@@).write8(43, 2)]

motion.play(1) 20 DXL(208) .write8(36, 0)

while(motion.status() == 1): . [DXL(209) .write8(35, 1)]
delay(@)

Fig. 7.6 Functions init() and init@_VSR() used in “IDN_ME2_RC_RPi.py”.

7.4 RPi4B Solution in C++

The C++ solution for the E- project, “IDN_ME2_SSC_VSR_RPi.cpp”, is based on the C++
solution for the E-SPI “IDN %_ A_SSC_VSR_RPi.cpp”, but the author added a “new” feature for
Autonomous Object Trac t using the camera and Pan-Tilt platform only, and the robot would
stand in its Basic Poge (Mot16n 1) during this process. This is an example of decoupling functional-
ities that happen to& esigned together previously.

t

most relevant Variable and Function definitions used in the program
R_RPi.cpp™

. @ an-Tilt servos are now IDed as 19 (Pan) and 20 (Tilt) (Lines 43-44 and 53-54).

o e U2D2 module is used, so Port ttyUSBO is enacted at 1 Mbps (Lines 45-46).

e /Line 101 defines the “new” Global Boolean Variable camera_only and initializes it to
FALSE.

e Port ttyACMO is now used (wired USB to CM-550) and set to 115.2 Kbps (Lines116 and
118).

49

43 #define]DXL1_ID 19 // Dynamixel#l ID: 19

44 #define]DXL2 ID 20 // Dynamixel#2 ID: 20

45 #define BAUDRATE 1600600

46 #define DEVICENAME "‘dev&ttzUSBO" // Using U2D2

53 int IDs[2] = { 19, 28 };

54 int dx1_goal position[2] = { 2048, 2562 };

99 bool stop_once = false; V
100 bool SC_control = true; // “"simulated" Supervisory Control for RPi

101 bool camera_only = false;] // when true object tracking using camera only

116 =const char* PORTL = "/dev/ttyACM®"; // wired
117 //const char* PORT2 = "/dev/rfcomm@"; // BT ¢
118 serial_port_base::baud_rate BAUD1(115200);

219 [=int sync_write_19_20()
220 |{

248 [Zint sync_read_19_20()
249 {

<
Fig. 7.11 Selected Variables Definitions in “ }E2_SSC_VSR_RPi.cpp”.

Fig. 7.15 shows the “new” robot behavior whe ra_only is set to TRUE (Lines 827-831)
which is to stand still at the Basic Pose, i.e., “0” Packet avior (Lines 829-830). Under this con-

dition, the operator would see the robot tracking tie=e0lor object using the Pan-Tilt platform only.
This is a good option to use when the operat%ﬁtrying out different cameras or enabling the
GStreamer option in the RPi4B’s 64-bit Wl that option is reliably available via the RPi Foun-

dation. Qi
A demonstration video is avail% is link https://youtu.be/bUEz2e150wo.

50

