Robotics Applications Programming
ROBOTIS DREAM Systems Q,Q

(Excerpts) V)

A%
o

3
By Chi N.
°

CNT Robotics LLC, Buford

3
C) 2019

Chapter 1: Using R+m.PLAY700™ with TASK™

(http://www.robotis.us/dream/), but Thai (2018) shows that users can also interface the DREAM II

ler (CM-150) to work with the “Windows PC / MIT SCRATCH 2” environment using the RO
R+SCRATCH helper application (V. 1.09 and above - http://www.robotis.us/roboplus2/). ore in
this Chapter, readers will be shown how to interface a TASK program with the Mobile ﬁpp cayed

Currently (2019), ROBOTIS only advertises the use of the TASK tool with the DREAM II S}%Q
ontrol-

R+m.PLAY700 which was originally created to accompany only the PLAY700 kit (ife. Cantroller CM-50)
(http://www.robotis.us/software/play700/). But the PLAY700 App turns out to be a le to all Firm-
ware 2.0 Controllers, including the CM-150 (http://emanual.robotis.com/docs/ﬁ&sl/pgotocou/) and the in-
terfacing is done by using SMART DEVICE commands in conjunction withdlSM CONSTANT parame-
ters inside the TASK tool. The “SmartDeviceControlTable.PDF” file contain ailed information about
these SMART functions and their corresponding arguments, and this do%ent is accessible at this web link
(www.cntrobotics.com/advanced-dream). This PDF file is a Chro;nem‘t ted English version of this Ko-
rean web page http://support.robotis.com/ko/software/mobile_app/, /smanrt_manual.htm#Actua-
tor_Address 0B3. 0%'

1.1 Installation and Usage of R+m.PLAY700 :

The latest version of R+m.PLAY 700 can be %ﬁded and installed on your iOS or Android devices
at these web links (https://play.google.com/stgre/appydetails?id=com.robotis.play700&hl=en or
https://itunes.am)le.com/us/app/plav700/id,&7721?mt—8). The author had found that the Android’s
version of the PLAY700 App is more funcgnaland less buggy than the i0OS’ version.

1.1.1 File & Folder Managem‘nt Difjerences

For development work, the aut appens to use a Windows 10 PC which interfaces well with Android
devices, and all file and fold@agement can be done via Windows Explorer. Fig. 1.1 shows the

‘on an Android device.

folder/file structure for PL
The reader can see LAY 700 project has many components represented by the folder structures
shown in Figs. 1.1%

Fig. 1.1 sh all ROBOTIS R+m apps are installed under a main folder named “RoboPlus”, off
the root d1rect the main storage. As one drills into the PLAY 700 folder, one can see three sub- folders
“Custom ”and “Temp”. The “System” sub-folder contains the 4 example projects provided by
PLA 7 “Custom sub-folder contains the user-initiated projects, for example the “Hello World”

prgject re the project’s standard components are stored:

dio — for audio files to be played by the mobile device but controlled by the TASK code at run time.
Captured — where pictures captured by the PLAY 700 app via the mobile device’s front and back cameras
are kept.
Db — where SMART databases are stored, including “Text” and “Audio Input” lists used for Speech
Recognition (these items can only be modified via the editing of the Project’s Tools — see Sections 1.1.2
and 1.1.3).

Image — where photos specifically used by a given project are first “registered” and then “stored” as
background images (i.e. “Bg” sub-folder) or as foreground images (i.e. “Fg” sub-folder).

Motion — where MTNX (Motion) files are stored. The CM-150 is not capable of processing Motion files.
Recorded - where videos captured by the PLAY700 app via the mobile device’s front and back cameras
are kept.

Task — where TSKX files are stored if the R+m.TASK tool is used to create TASK codes on the mobile
device.

Video — for video files to be played by the mobile device but controlled by the TASK code aw&.

The “Temp” folder is only used by the PLAY700 App for its own purposes. (Mg

For an i0OS device, Fig. 1.2 shows that ROBOTIS R+m Apps are installed under in fofder named
“Apps” off the root directory of the main storage. As one drills into the PLAY700 f@ne would en-
counter a “Documents” sub-folder which further branches out into two sub-foldges “ m” and “System”
which contain similar sub-folders from Audio to Video as described in previius agtaphs.

If the user prefers to use the mobile version of the TASK tool, please con e details in Section 1.10.
1.1.2 Settings for PLAY700 App %

[J
Fig 1.3 shows a screenshot of the main menu window for th 00 App where the reader can see a

“gear’ icon on the top right corner. Once this “gear” icon is ta]@ ce, the “Settings” screen is shown as

in Fig. 1.4.
O\ :

Settings

Default Setup

Connect to Robot

Select Bluetooth device,

Reset Example
All modified or custom content (including code / images) will be deleted,

Accessibility Settings

Modify accessibility settings,

Range of Gesture Error Settng

Gesture tolerance setting

Display example image on gallery

Several smart device won't work,

Scanning media
1£ folder or file doesn't display on PC, it might be solved after scanning and reconnecting.,

Version Information
0_9,4,0

‘ O, Fig. 1.4 App-level “Settings” for PLAY700 App.

The first item “Connect to Robot” allows the user to scan for new BT devices and pair them or to choose
a specific BT device among those that were previously paired.

The second item “Reset example” can be used to reset all ROBOTIS example System projects to their
originally installed states. This setting does not affect the Custom projects.

The third item “Accessibility Set-up” only pertains to Android devices where the user could set-reset
many OS-level settings such as “Auto Rotate Screen” or “Screen Timeout”. This “Accessibility” setting is
not available for iOS devices.

The fourth item “Range of Gesture Error Setting” is used to set the accuracy of the gesture function (a
number between 0 and 30 — available to both Android and iOS devices).

The fifth item “Display Example Image on Gallery” also pertains to Android devices only and d

what its label implies.

The sixth item “Scanning Media” also pertains to Android devices only and removes the c@%id-
den” status of the folders and files inside the PLAY 700 main folder so that Windows Expl% PC can
“see” them.

1.1.3 Tools available for a PLAY700 Project <)

Going back to Fig. 1.3, when the user taps on the “Edit” button of a projectj@n as shown in Fig.
1.5 displays all the components/tools that can be used for this project. The grren{ Xndroid version (0.9.4.0)
has all these tools operational, but for the current iOS version (1.0.5), thwing six tools are not yet
functional:

“Instrument” in the Multimedia group.

O
“Illumination” in the “Sensor” group. X}
@t “Other” group.

“Received SMS”, “Status Bar”, “Vibration”, “Application]

2'Q)

Yello World Copy Project Delete Project
ROBOTIS

A+ mMotion Motion
offset

Color Motion Line
Detection Detection Detection Detection

Display
Background Foreground Shape Number

Multimedia

Text-to- Voice Instrument Volume Audio Video Record Video
Speech Recognition Playback Playback

Take Picture

Gradient Tllumination ~ Magnetic Direction Noise mea- Touch
field surements

Timer Current time Vibration Flash Application

Q Fig. 1.5 Components/Tools of a SMART Project.

For example:

1) The “R+m.TASK” item allows the user to edit the TSKX files corresponding to this project.

2) The “Face Detection” item switches to the camera whereas the user can choose the front or back camera
so that it can find a human face and then puts on a pair of sun glasses across the eyes, all in “real time”.
3) The “Color Detection” item also kicks in the camera and shows a live image with a small centered
region of interest where it would try to detect for 4 “colors”: Black, Red, Green and Blue.

4) The “Display” section pertains to “Background” and “Foreground” images, and other items like “Text
and “Number”. For example, the user can add and register Text Items if the user chooses the “Text” item
in this “Display” section.

5) The “Multimedia” section can be used to record or play audio and video segments, and

speech and speech recognition tasks.

99

6) The “Sensor” section pertains to sensors embedded in the mobile device such as it sture

Gyro and Tilt sensors.

7) The “Other” section applies to “Messages” and other “Applications” that can o this project.
1.2 Basic Usage of TASK with R+m.PLAY700 V

1.2.1 Two ways to access SMART DEVICE commands y

Interestingly, the access to the SMART DEVICE commands for the -150 has a rather tortuous his-

tory which the interested reader can read at this web link https://wgyw Chtpebotics.com/robotis-evolving-dy-
namixel-concept). At present, users have two options for using tWT DEVICE commands:
S

1) Using the TASK V.1 tool which is part of the older R V.1 Suite
(http://www.robotis.us/roboplusl/). Fig. 1.6 illustrat% ART APP” menu in TASK V.1.

2) Using the TASK V.2 tool requires a mor%% procedure because, starting with TASK V.2.1.4
(March 2017) and for unknown reasons, KOBO S removes access to the “SMART DEVICE” sub-
menu for the CM-150’s programmin &e, however the actual SMART commands are still
functional within the CM-150 firmwardN\ at %east for now, i.e. April 2019). Thus to use SMART
commands with a CM-150, the as to temporarily change the “Programming Controller” field
to one of the other Firmware 2f0 congr¥llers (i.e. CM-50/200 or OpenCM-7.00/9.04, see Fig. 1.7 where
CM-200 is used).

As far as TASK
5x5 grid in elther

rned, the Mobile Device’s Display Screen is divided into 25 zones arranged in a

1.2.2 Organization lay/T ouch Zones on Mobile Device
'g r Landscape mode (see Fig. 1.9).

in Section R-+m.PLAY700 App reports a Zone Number between 1 and 25 (as shown in Fig. 1.9) to

When t ile D1splay is used as an Input Device, for example as a Touch Sensor (see more details
the @am at run time.

Wh n the Mobile Display is used as an Output Device, for example for a Text item (Line 9 of Fig. 1.8
an Fig. 1.10 for other functions such as “Shape” and “Number”), these Display Zones can be specified
in two ways, depending on the programmer’s needs, via a SMART CONSTANT Parameter which can have
a fixed value or a variable value during run time:

1.3 Touch Areas and Shapes Display

Let’s next look at a basic usage of the Touch Area feature provided with the PLAY700 App which can
only monitor up to 2 Touch Areas simultaneously. We’ll also use the Shape Display feature whereas Shape
#1 is a Circle, Shape #2 is a Square and Shape #3 is a Triangle (currently, PLAY700 does not allow any user-
registered shape to be included in this list).

The program “AD-TouchMe.tskx” essentially monitors the 25 possible Touch Areas (see Fig. 1 ere
the user may have touched the mobile display with one or two fingers, and then it would draw ei
or a square in those detected zones using randomized colors. Fig. 1.14 describes the algorlt ia an

Endless Loop: (»

1.4 Text-to-Speech and Music Play
This musical project illustrates how to access the Musical Instruments avail@ the mobile device

[1] to “Gunshot” [128]). For each instrument, there are 10 Octave s 1-10] and 12 Musical Scales
or Notes [1-12]: e.g. Note 1 is “Do”, while Note 3 is “Re”, and sofo until Note 12 which is “Shi”.
3-byte SMART CONSTANT is associated with the Music F where the lowest byte (Byte 1) con-
tains the Note’s value, while the next higher Byte (BW s the Octave’s value and Byte 3 con-

and how to activate the Text-to-Speech feature
1) There are 128 Musical Instruments available via the PLAY700 ApEM‘Acoustlc Grand Piano”

tains the Instrument’s value. The 4™ byte of a typicaS CONSTANT is not used for the Music
Function (see Section 1.2.2) and needs to be set to zeg \

2) The Text-to-Speech feature uses the same Ji t Items used for displaying them on the mobile
screen (see Section 1.2.2) but activates a dif@%ﬂART DEVICE function.
‘ A

20 ENDLESS LOOP

21 {

22 // Using Musical Instrument on Mobile Device for 3 Noted Do-Re-Mi - going through 6 different types of piano

23 LOOPFOR (I = 1 ~ 6)

24 K

25 ‘ 0 SMART: Text Display| = [Position:(3,2)].[Item:7],[Size:40],[Color:Green]

26 0 SMART: Text Display| = [Position:(3,3)],[Item:l],[Size:40],[Color:Yellow]

27 0 SMART: B, Text to Speech (1TS)| = Textltem7

28 WAITWHILE ([0 SMART: B, Text to Speech (TTS)|t= 0)

29 [0 SMART: B, Text to Speech (TTS)| = |

30 WATWHILE ([0 SMART: B, Text to Speech (TTS)|!= 0)

~ v
O‘V Fig. 1.16 Part 1 of Main Algorithm for program “AD-MusicPlay.tskx”.

Fig. 1.17 shows Part 2 of the main Endless Loop for the program “AD-MusicPlay.tskx”:

1) Line 32 save the current value of Index “I” to Parameter “InstrumentType” and Line 33 shifts this
value 2 bytes to the left by multiplying it with the binary number “1 0000 0000 0000 0000 (i.e. to Byte
3 position, see Section 1.2.2 to review details about the structure of the 4-byte SMART CONSTANT).
The decimal equivalent of the binary number “1 0000 0000 0000 0000 is “65536” (which was used in

Section 1.2.2). This shifted “InstrumentType” value is then saved in Parameter “Instru-

mentValueTempl”.
32 InstrumentType = |
33 InstrumentValueTemp1 = InstrumentType = 0000 0000 0000 0001 0000 0000 0000 0000
34 InstrumentValueTemp2 = Octave = 0000 0000 0000 0000 0000 0001 0000 0000
35 InstrumentValueTemp1 = InstrumentValueTemp! <+ InstrumentValueTemp2 Q
36 InstrumentValue1l = InstrumentValueTemp1 + DoNote »
37 InstrumentValue2 = InstrumentValueTemp! + ReNote ’
38 InstrumentValue3 = InstrumentValueTempl + MiNote
39 ID SMART: [T] Play a musical instrument] = InstrumentValue1
40 WAITWHILE (|0 SMART: W] Play a musical instrument| > 0)
4 [0 SMART: W] Play a musical instrument| = InstrumentValue2
42 WAITWHILE (|0 SMART: W] Play a musical instrument| > 0)
43 |D SMART: W] Play a musical instrument] = InstrumentValue3
44 WATWHILE ([0 SMART: W] Play a musical instrument| > 0)
45 }
46 }

Yy
Fig. 1.17 Part 2 of Main Algorithm for progé\AD—MusicPlay.tskx”.

AW

Video 1.5 shows how the “Music” PLAY700 B 'e@set up on the mobile device and the run time
performance of “AD-MusicPlay.tskx”.

1.5 Remote Control using Touch Areas (&und Effects
In this project, we’ll use the Dm k (Robot 15) from the DREAM II School Set (see Fig. 1.18).

For this RC project, we’ll ag¥§
schemes:

1) For the standard Qi @nputs such as Forward-Backward-Left-Right, the user needs to keep press-

e the Touch Area feature but with two different user-interaction

ing on the selected c Area(s) for the robot to keep on performing the user-wanted maneuvers (i.e.

“function activeti n pressing on Touch Area”).

2) The user pk’sgn two other Touch Areas to Increase or Decrease the robot’s Speed independently

of the cu ection input (subject of course to a maximum of two Touch Areas at run time), however
the Sp hayge will occur only after the user lifts the finger off the selected Touch Area (i.e. “function
actiysme pon release of Touch Area”). In other words, the user would need to “tap” a given Touch

re m3ke its related function to work.
11 also implement two types of Sound Effects:

1) Using the CM-150 Buzzer to confirm a Speed Change.

2) Using the mobile device’s Audio Playback service to play an audio clip of an engine running whenever

the robot is in motion.

Fig. 1.18 Dump Truck robot from DREAM II School get.

A)

5 @ PORTI3]:Servo Motor Drive Mode | = TRUE (1)

6 @ PORT[3]:Servo Motor Speed | = CCW:1000 (97.75%)

7 R PORT([3]:Servo Motor Position |= 512

8 Speed = 900

9 TimeDelayl = 100

10 TimeDelay2 = 25

1" /I Getting remote device ready using SMART commands

12 0 SMART: {5 Screen Rotation| = Portrait Mode (1)

13 0 SMART: @ Text Display| = 0

14 /I User needs to make sure that robot is connected to mobile device. User whistles loudy when ready.

15 WAITWHILE ([SMART: G Noise (dB)| < 50)

16

17 /I Display Control Text FORWARD, BACKWARD, LEFT, RIGHT

18 0 SMART: & Text Display| = [Position:(3,2)],[Item:1],[Size:100],[Color:White]

19 0 SMART: Text Display| = [Position:(3,4)],[Item:2],[Size:100],[Color:White]

20 j SMART: & Text Display| = [Position:(2,3)],[Item:3],[Size:100],[Color:White]

21 0 SMART: @ Text Display| = [Position:(4,3)],[Item:4],[Size:100],[Color:White]

22 /! Display Speed Control Text SLOW or FAST

23 0 SMART: @ Text Display| = [Position:(1,1)],[Iltem:5],[Size:75].[Color:Red]

24 0 SMART: & Text Display| = [Position:(5,1)],[Item:6],[Size:75],[Color:Red]

25 // Display Platform Control Text RAISE or LOWER

26 0 SMART: @@ Text Display| = [Position:(1,5)],[Item:7],[Size:75],[Color:Yellow]
0 SMART: @ Text Display| = [Position:(5,5)],[Item:8],[Size:75].[Color:Yellow]

27
Q 5 Fig. 1.19 Initialization Event for “AD-TouchRC-DumpTruck.tskx”.

ig/1.20 describes Part 1 of the main algorithm implemented as an Endless Loop:

1) The values for the Detected Zones [1-25] for “Touch Area 1” and “Touch Area 2” are respectively
saved in Parameters “Touch1” and “Touch2” (Lines 31-32).

2) When either Parameter Touchl or Touch2 has a non-zero value (Line 33), this means that the user has
pressed on the mobile screen somewhere, the algorithm goes on to check whether any Touch Area corre-
sponding to the “Directional” zones has been confirmed using 4 PARALLEL IFs (Lines 35, 41, 47 and

53). In Thai (2018), the PARALLEL IFs structure is explained in detail from design goal to run-time
performance, thus that information won’t be repeated here. The gist of this structure is to allow the user
to combine two “directional” inputs at the same time: for example, “Forward” and “Right” would make
the robot make a wider right turn than if only “Right” was used.

3) Lines 37, 43, 49 and 55 are used to add a Sound Effect of a running engine out on the Play Audio 1
channel of the mobile device any time that the robot is set in motion. Please note that the PLAY78QApp
has a second Audio channel that can be used simultaneously with the first.

4) Finally, please note that the “directional” control of the robot is implemented with the A&guctigh acti-
vation upon pressing on Touch Area” scheme. (»

see Fig. 1.18) and

1.6 Voice Control

For this project, we continue to use the Dump Truck as the demonstration
allows for the same robot functionalities as described in the previous Sectiog 1.5 ig. 1.19), but this
time these robot functions are activated by Voice Commands via the Speech Ngcgtnition tool of the
PLAY700 App. Furthermore, because of the lengthy process of Speech Recognition (using the Web-based
Google Speech Engine), each Voice Command will only trigger the ¢ nding robot function for a short
time period, then the robot is reset to its full-stop state waiting for 1 gt Voice Command.

Fig. 1.24 describes the Initialization segment of the progra -VoiceControl-WithDelays.tskx™:

1) Lines 6-8 initialize a Servo Motor on Port 3, and I4
TimeDelay?2, logical flag InvalidCommand and text

=T4 initialize Parameters Speed, TimeDelay1,
oiceCommand.

2) Next, the mobile device screen is set to P
for the user to make some noise louder thga 50
to its full-stop state. &
3) Line 21 calls the Menu Functio is described in Fig. 1.25 which lists the TASK code on the left
and the resulting mobile user i ¢ on the right. The “Directional” Text Items are set up with Lines
145-149, while the “Speed Coitrol”p ext Items are set up by Lines 151-152 and the “Platform Control”
Text Items are set up by Lines 155. A new Voice Control Text Item for “Talk” is also displayed at

ode (Line 16), clears the screen (Line 17) and waits
Line 19) which then triggers Line 20 setting the robot

Position [3,5] (Line 157 LAY700 project is also needed to be set on the mobile device with the
following eleven Text n order from 1 to 11): “Forward”, “Backward”, “Left”, “Right”, “Slow”,
“Fast”, “Raise”, “Lg ‘Talk”, “Stop” and “Invalid Command”.

X
QQ@O

140
141
142
143

145
146
147

149
150
151
152
153

155
156
157
158

[FUNCTION Menu

{

-

1
1
1

{

W W N O U A W N

N N = s eh A wh A eh A A e
- O W 0O N O U S~ W N =~ O

Voice Control of Dump Truck Maneuvers (CM-150)
WITH time delays and stop for each command
By C. N. Thai 3/20/2018

|START PROGRAM

B PORT[3]:Servo Motor Drive Mode | = TRUE (1)

8 PORTI[3]:Servo Motor Speed | = CCW:1000 (97.75%)

B PORTI3]:Servo Motor Position | = 512

Speed = 900

TimeDelayl = 500
TimeDelay2 250
TimeDelay3 = 125
InvalidCommand = FALSE (0)

VoiceCommand = TextItem 10

/l Getting remote device ready using SMART commands

0 SMART: 3 Screen Rotation | = Portrait Mode (1)

0 SMART: @@ Text Display| = 0

/l User needs to make sure that robot is connected to mobile device. User whistles loudy when ready.

WAIT WHILE (ID SMART: &> Noise (dB)|< 50)
CALL Stop
CALL Menu

A
Fig. 1.24 Initialization Event fq, [QiceControl—WithDelays.tst”.

<

0 SMART:

&5 Screen Rotationl = Portrait Mode (1)

0 SMART:

Text Display] =0

/I Display Control Text FORWARD, BACKWARD, LEFT, RIGHT, STOP

0 SMART:

@ Text Display| = [Position:(3,2)],[Item:1],[Size:60],[Color:White]

0 SMART:

& Text Display| = [Position:(3,4)] [ltem:2],[Size:60],[Color:White]

0 SMART:

@ Text Display| = [Position:(2,3)],[Item:3],[Size:60],[Color:White]

0 SMART:

& Text Display| = [Position:(4,3)],[Item:4],[Size:60],[Color:White]

0 SMART:

i Text Display| = [Position:(3,3)],[ltem:10],[Size:60],[Color:Red]

/I Display Speed Control Text SLOW or FAST

0 SMART:

& Text Display| = [Position:(1,1)],[Item:5],[Size:60],[Color:Red]

0 SMART:

@ Text Display| = [Position:(5,1)],[Item:6],[Size:60],[Color:Red]

/I Display Platform Control Text RAISE or LOWER

0 SMART:

& Text Display| = [Position:(1,5)],[Item:7],[Size:60],[Color:Yellow]

0 SMART:

'@ Text Display| = [Position:(5,5)],[Item:8],[Size:60],[Color:Yellow]

/I Display Voice Control Text TALK

[0 SMART:

Text Displayl = [Position:(3,5)),Item:3],[Size:60],[Color:Blue]

Fig. 1.25 Function “Menu” for “AD-VoiceControl-WithDelays.tskx”.

10

Forward

Backward

1.7 Bull Fight using NIR and Color Sensors with Audio Files

This Bull Fight project is a remake of a similar project described in Section 6.6 of Thai (2018) which
only used the musical melodies from the built-in buzzer for sound effects. But this time around, we’ll be
using more realistic MP3 sound clips of a growling bull and of an “Ole” exclamation from the crowd attend-
ing a typical bullfight. These two sound clips come from the Sound Bible web site
(http://soundbible.com/suggest.php?q=bull&x=0&y=0), courtesy of Mike Koenig and as a Creative -
mons Attribution 3.0 credit. C@

Hardware wise, this Bull Robot (Fig. 1.31) illustrates a dual-range object detection schem er|

&\"Qig. 1.31 Bull Robot with Color Sensor facing forward.

. rther range, the built-in Left and Right NIR Sensors are used to detect the presence of the
j 0 make the robot move closer to the object. During these maneuvers, the PLAY700 App

]
@ a growling-bull MP3 file out of Audio Channel 1 of the mobile device.

* When the Color Sensor on Port 4 gets in range, then it is used to determine whether the object has a
Red color or not. If a Red color is found, the Bull robot would back up and then charge ahead while
growling out of Audio Channel 1. At the end of this charge, the PLAY700 App plays the “Ole” MP3
file out of Audio Channel 2 of the mobile device. For any other color found, the robot just stops and
plays Melody 20.

11

1.8 Camera Functions

Using the R+m.PLAY700 App, both rear and front cameras for a typical mobile device are accessible
via SMART DEVICE commands inside a TASK program (please check program “AD-SelectCamera.tskx”)
along with picture and video capturing functions (see Fig. 1.36). Furthermore, some rudimentary image pro-
cessing tools are also available through TASK programming;:

Camera Features f»b
0 SMART: {8} Camera Selection| = Back Camera (1) Q

0 SMART: @ Photo Capture| = Capture (1)

0 SMART: [Video Capture| = Stop (0)

ID SMART: {83 Camera Sensor| = Face Detection Mode (1) Q
Detected_Zone = [[J SMART: [} Face Detection Area | J

[0 SMART: f8i Camera Sensor| = Color Detection Mode (2)
/I Get Detected Color: 2=Black, 3=Red, 4=Green, 5-Blue

/I if these colors are found in Zone [3,3]=Screen Center ONLY
Detected_Color = [[J SMART: EJ Detected Color|

| 0 SMART: f8i Camera Sensor| = Motion Detection Mode (3)
Detected_Zone = ID SMART: & Motion Detection Area]

0 SMART: fgi Camera Sensor| = Line Detection Mode (4)

0 SMART: EF Tracking Color (Line-Tracer)| = Green Line (4)

/I Get Detected Zone only if Tracking Color appears in any of the Zones 1 through 5
Detected_Zone = [D SMART: = Line Detection Areal

Fig. 1.36 R+m.PLAY700 Vist %d Functions available via TASK Programming.

1) In a “Face Detection” mod& the BMART “Face Detection Area” Function would return a number
between 1 and 25 to the TASK program, representing the Zone Number where the “face” was detected
(please review Fig. 1.9 p of these zones and try out the program “AD-FaceDetection.tskx™)

2) In a “Color Dete@mode, only pixels within Zone 13 (i.e. Screen Center or Position [3,3]) are
evaluated for their@YloPvalues to see if they fit, on the average, “fixed” internal numerical RGB criteria

for 4 possible es: 2 for Black, 3 for Red, 4 for Green and 5 for Blue. Please try out program

bti®n Detection” mode, the SMART “Motion Detection Area” Function would return a num-
1 and 25 to the TASK program representing the Zone Number where “Motion” was de-

4) In a “Line Detection” mode, the user needs to specify which color the App should be tracking for: 2
for Black, 3 for Red, 4 for Green and 5 for Blue. Furthermore, only the top 5 Screen Zones, i.e. Zone 1
through 5, are considered by the App, thus the SMART “Motion Detection Area” Function would return
a number between 1 and 5 to the TASK program if the user-chosen color was found among those zones
(please try out the program “AD-ColorLineDetection.tskx”).

12

1.8.1 Picture and Video Capture

This project “AD-CameraCapture.tskx” integrates the following SMART features into a more utilitarian
application: text display, touch area, camera selection, picture/video capture, and activating an external App
(i.e. Gallery) to review the recorded pictures and videos. The corresponding PLAY700 App project uses the
following list of Text Items:

1 — Front Camera Q
2 — Back Camera (»

3 — Pictures Q

4 — Videos (»

5 — Selected Q

6 — Taking V
7 — First Picture V

8 — Second Picture %

9 — Gallery o o

28 | FUNCTION Menu
2|

30 0 SMART: @ Text Display| = 0 Front Camera
3 0 SMART: & TextDisplay| = [Position:(2,1)], Item:1],[Size:40],[Color:White]
3 U SMART: & Text Display| = [Position:(2,2)],[Item:2],[Size:40],[Color:White]
EE} (0 SMART: & TextDisplay| = [Position:(5,1)],[Item:3],[Size:40],[Color:White]
34 (0 SMART: @ TextDisplay| = [Position:(5,2)],[item:4],[Size:40],[Color:White]
3% 0 SMART: @ Text Display| = [Position:(5,5)], Item:9],[Size:40],[Color:White]

36 D SMART: @ Shapes Display] = [Position:(3,5)],[Item:1],[Size:40],[Color:Green]

|}

Back Camera Videos

Fig. 1.38 Source Code for Function “Menu” and how it looks at runtime.

13

1.8.2 Color Dowel Alert

This project “AD-ColorDowelAlert.tskx” showcases a rudimentary Image Processing tool using the fol-
lowing SMART features: text and shape displays, touch area, switching between the three Camera Sensor
modes of Motion Detection, Line Detection and Color Sensing with the goal of highlighting the mobile
screen’s zone where a user-chosen colored dowel can be found in real-time (as much as possible). The cor-
responding PLAY700 App project uses the following list of Text Items:

1 — Black Q
2 —Red Q(\/

3 — Green (»

4~ Blue Q

5—Scan

6 — Found V

7 — Dowel of Interest V

8 — Motion Detected at Red Circle %
N

Fig. 1.46 describes the Initialization section of program * lorDowelAlert.tskx™:

1) Lines 5 to 8 initialize three Parameters “ColorType@ack, Red, Green or Blue), ScanMode
(True/False) and ScanDone (True/False).
2) The robot then waits for the user to make’%ﬁouder than 50 (Line 10).

a

3) Next, the mobile device is set to use Back’Camera, to set the screen in Portrait Mode, and clears
the Text Display overlay (Lines 12-1

4) Function “Menu” is called @ . Details of Function “Menu” are shown in Fig. 1.48.

ColorType = 0
ScanMode FALSE (0)
ScanDone = FALSE (0)

O 0 N O

// User needs to make sure that robot is connected to mot

[]

A
'& 10 WAITWHILE ([SMART: & Noise (dB)| < 50)
Q 1 /| Getting remote device ready using SMART commands

Q 12 0 SMART: Camera Selection| = Back Camera (1)
Q 13 0 SMART: {5 Screen Rotation| = Portrait Mode (1)
14 0 SMART: @) Text Display| = 0

15 CALL Menu

Fig. 1.46 Initialization Part of Main Program in “AD-ColorDowelAlert.tskx”.

14

1.9 Dual CM-150 Programming via Bluetooth

Eventually, the reader would find the two GPIO Ports (3 and 4) on the CM-150 as quite limiting and one
may wonder if a robot with multiple CM-150 controllers can be built and most importantly programmed to
work together collaboratively. And the answer is Yes, but for now between 2 CM-150s only, when using
Bluetooth (BT-210 or BT-410 — in theory) because so far ROBOTIS has only released Bluetooth firmware
that can only deal with a 1 to 1 pairing scheme, Master-Slave to be exact, and with a 1 to N versigago be
released sometime in the future (http://emanual.robotis.com/docs/en/parts/communicati
http://emanual.robotis.com/docs/en/parts/communication/bt-410/).

The author would add that, presently when using TASK, ones can coordinate multiple S CM-
XXX controllers to work together ONLY wusing ZigBee communicdtio
(http://emanual.robotis.com/docs/en/parts/communication/zig-110/, http://www.robgis.us/zig-110a-set/) —
unfortunately these ZigBee hardware are discontinued so they are hard to obtain gowadays. Thai (2017)
devoted Chapter 7 of that book to the topic of “Communication Programming wj CON Packets” and
the concept of “Message-Shaping” as it applied to ZigBee communications hard nd protocols (i.e. 1 to
1 and broadcast modes). This section 1.9 applies this “Message-Shaping”Qgoncpt to a Bluetooth Master-
Slave configuration between two CM-150 controllers.

Currently, ROBOTIS offers a set of Master/Slave BT-210s @@v.robotis.us/bt—ﬂo-set/) and an-
other set of Master/Slave BT-410s (http://www.robotis.us/bt-410-se ever the author has found that only
the BT-210 Master/Slave set would work properly for TASK co%b ween 2 CM-150s as developed in this
Section 1.9. If the reader happens to have 2 BT-210s availabl oth are in Slave mode, then the user can
follow the procedure described at this web link (http://e robotis.com/docs/en/parts/communication/bt-
210/) to convert them into a Master/Slave set. Unfom:ﬁ 7 the reader will also need to use an OpenCM-

9.04-C controller (http://www.robotis.us/opencmP*8-wefth-onboard-xI-type-connectors/) in order to per-
form the necessary steps to set one BT-210 into a r mode and also to pair it with the other BT-210 in
Slave mode.

be wused by the mobile-equigalen} ” of the TASK tool, called R+m.TASK2, available at

1.10 Use of Sample Codes on Mobile De¥ces
All sample TASK codes for th@ can also be transferred to an Android or i0S device so that they can
(https://play.google.com/store/apps

ils?id=com.robotis.task2&hl=en) for the Android version or at

(https://itunes.apple.com/us/ -task2-robotis/id1031166481?mt=8) for the iOS version. To transfer the
sample TSK codes to a H/device, the user only needs to use Windows Explorer on the PC side and
then drags and drops thepNat¥ the appropriate folder on the mobile device (see Fig. 1.58). For an iOS device,
the user will need t® u nes to transfer the sample codes from the PC to the user personal iOS device, via

File Sharing (see %\,

S

15

Chapter 2: Using Edbot® Dream Pro

Circa 2015, the Edbot software tool was first created as a server/client tool to be used within angc
classroom environment, along with teacher supervision of student access to individual ROBOTIS MINT robgts
(http://www.robotis.us/robotis-mini/), programmed with the MIT Scratch 2 Offline IDE (http://ed. /).
In 2018, the Edbot suite was expanded with the release of the Edbot Dream tool (http://ed.bo‘ bed/cam/)
which was designed to work with the DREAM II School Set (http://www.robotis.us/dreamy).

In January 2019, SCRATCH 3 (https://en.scratch-wiki.info/wiki/Scratch _3.0) was relgased)with an online
interface and a desktop interface (https://scratch.mit.edu/download). In March 2019¢Edb .5 was released
allowing the additional usage of SCRATCH 3 via a web interface (http://scratch,ed.b a desktop version
may be released in the future. Unfortunately, this web interface yields a SIOWW nications speed with
the DREAM robot and makes autonomous behaviors harder to achieve, thu;§l this Yook concentrates on the

usage of SCRATCH 2 Offline Editor instead. Please see Section 2.5 for iscussions regarding the use
of SCRATCH 3 with the DREAM II robot.

Furthermore, the Edbot Dream Pro tool (V.5 and above) allow, mple robot programming via three
software interfaces: Scratch, Python and JavaScript (http://supportied.pot/edbot-dream-index.html), and with
more languages such as Node.js, Java and C# and other platfo uch as Chromebooks being planned.

In this book, an individual user is assumed, i.e. ge @’s PC is used as the local host (Port 8080)

and the Edbot Dream Pro tool is used in its server lease view this YouTube video for an overview
of the capabilities of the Edbot Dream Pro tool %ss:// .youtube.com/watch?v=pOk5szsngMO0).

Hide Edbot motion data

Hide Edbot colour data

Fig. 2.1 Multi-software and multi-robot application of the Edbot Dream Pro tool.

Furthermore, the Edbot software environment allows the mixing of MINI and DREAM robots in a sin-
gle instance of Scratch (https://www.youtube.com/watch?v=yUpx42eNR2I).

16

For this Chapter, the author assumes that the reader is already familiar with MIT SCRATCH 2 software
or has read Chapter 4 of the other DREAM book by the author (Thai, 2018). If not, the user is recommended
to first read up on such works as Ford (2014), Warner (2015) or Vlieg (2016) to have a thorough understanding
ofthe SCRATCH 2 language. In this Chapter, only selected SCRATCH 2 features, most applicable to robotics
and unique to the workings of the Edbot Dream Pro software, would be presented. However, Section 2.5 will
present some “appropriate” SCRATCH 3 applications with the DREAM II robot.

2.1 Edbot’s Hardware and Software Installation Requirements (»

The user will need to purchase the appropriate Edbot Dream kits and/or software product s Ro-
bots in School Ltd. (https://shop.ed.bot/collections/products). If the user has already purchased t REAM
II School Set elsewhere, the user can just buy the Edbot Pro product key from Rolots in School Ltd.
(https://shop.ed.bot/collections/products/products/edbot-software) or from BQTIS USA
(http://www.robotis.us/edbot-software-product-key/). In this book, the author as es that the user is us-
ing the Pro version of the Edbot Dream tool (Version 5.0.6.1280 or higher).

XB)OTIS BT-210 module

Hardware wise, the Edbot Dream software only works with either the R
(http://www.robotis.us/bt-210/), or the BlueTooth module designed Robots in School Ltd.
(https://shop.ed.bot/collections/products/products/bluetooth—module—f(x—r@l “dream).

Please view Video 2.0 for the typical steps needed to install the w ream Pro software on the user’s
PC. Importantly, each software product key will be bound pe nently to the specific BT-210 or the
Edbot BlueTooth modules used, thus the user will need t t carefully his or her “robots” organ-
ization if the user wants to use the Edbot software with ¥ robots. Fig. 2.2 shows the author’s Edbot
set up for 4 robots: Zeeb and Zob are DREAM robom ra and Zork are MINI robots.

Scratch <cc101@workstation> ~ | Enable:

s bled
Type Edbot Dream

Mode! ERD150

Connection: | Local @ b8:63:bc:00:80:23

Status: ENABLED, CONNECTED

Type: Edbot

..
Mode! ERM161 '
n: | Local @ b8:63:bc:00:1f:62 IT- OT A

ENABLED, CONNECTED l A |

\ Status: oo
Q: v Zob Scratch <cc101@workstation> v Enabled S

Type Edbot Dream

Mode ERD150
Connection: | Local @ b8:63:bc:00:20:7a 7
Status ENABLED, DISCONNECTED

Q ¥ Zok Seratch <cc101@workstation> ~ | Enabled

Type: Edbot

Yiodu - « B

Q Mode ERM161 A
Connection: = Local @ b8:63:bc:00:91:83 J oT A
Status ENABLED, CONNECTED V. " |

Fig. 2.2 Author’s Edbot Setup for his 4 robots.

Lastly, the user needs to update the firmware of the DREAM controller CM-150 to Version 33 or above.
Please refer to this YouTube video as a general procedure
(https://www.youtube.com/watch?v=LX3WuWJQosw) using the MANAGER tool from ROBOTIS.

17

2.3 SCRATCH 2 Blocks Provided with Edbot Software

Edbot provides 13 Stack Blocks and 7 Reporter Blocks which can be accessed under the “More Blocks”
item of the SCRIPTS tab (see Fig. 2.8).

2.3.1 MOTOR & SERVO Blocks Q

A quick reminder to the readers regarding the hardware design of the DREAM Controller CM-15
that Ports 1 and 2 are reserved strictly for Continuous-Turn motors GM-10A (http://www.robotis.
motor-gm-10a/), while Ports 3 and 4 can be used with Servo motors SM-10 (http://www.roboti

browse through a list of these sensors at http://www.robotis.us/sensors/.

Edbot offers two types of motor/servo control:

1. Single-Actuator Blocks — i.e. one block is used to control each indi@lﬁc‘mator (see Fig. 2.9).
There are 3 implementations of these Single-Actuator (SA) blockg: “S otor Speed”, “Set
Servo On/Off” and “Set Servo Position Speed”. %

N

Zeeb set port1l motor speed clockwise

Zeeb set port3 servo off

Zeeb set port3 servo position speed

Fig. 2.9 Edbot’s S
2. Multiple-Actuators Blocks — 14

)4
@ACTUATOR (SA) Blocks.

lock can be used to control multiple actuators simultane-
ously (i.e. with ONE “big”/ommNnication packet via the Edbot software tool) — see Fig. 2.10.
Please note that this feat®ge oply works with Edbot V. 4.1.979 or higher, furthermore the
CM-150 firmware neegds to be V.32 or higher.
X

Zeeb L T G LT T) 1/50/2/50/3/50/4/50
Zeeb set servos
Py Zeeb T TV LT T 3/150/50/4/150/100

Q Q Fig. 2.10 Edbot’s MULTIPLE-ACTUATORS Blocks.
Ly

‘D & BUZZER Blocks

Fig. 2.11 shows the Edbot blocks used to control the external LED module LM-10
(http://www.robotis.us/led-module-lm-10/) which can be only connected to Ports 3 or 4, and the built-in
BUZZER located inside the CM-150 Controller.

18

Zeeb set port3 LED module o
Zeeb buzzer pitch o duration o

Zeeb buzzer melody o

Fig. 2.11 Edbot’s LED and BUZZER Blocks.

The “Set LED Module” block requires two inputs: a Port Number (only 3 or 4 are allowed) and a%
merical value [0-3] to turn on/off the Orange and Blue LEDs of the LM-10 (details can be found a 1

http://support.ed.bot/edbot-dream-scratch2.html). %
The “Buzzer Pitch Duration” block also requires two inputs: the Pitch (i.e. Musical S@O—], and its

time duration [0-50], each time unit corresponding to 1/10 of a second (thus a maximum Rf 5 spconds dura-

tion).
The “Buzzer Melody” block can take on a numerical input between 0 and 2 alwhosen Melody
will be played for 5 seconds by the CM-150 Controller through its embedded spe icrophone.

2.3.3 SENSOR Blocks &‘\Q

The first SENSOR block is the “Port Sensor” block which is d d to report on the current Calibrated
Values of a variety of Sensors that can be attached to either B@ 4 (see Fig. 2.12). The definition and
range of the numerical values reported by this block vary de ‘o on the sensor type and more details are
available at this web page (http://support.ed.bot/edbot-dega atch2.html):

Ve

Zeeb port 3 servo position

servo position

IR sensor

DMS sensor
temperature sensor
touch sensor

N magnetic sensor
raw value

. :
\% Fig. 2.12 Edbot’s PORT SENSOR Blocks.

2.3.4 SPEEC&%
These blocQo de Text-to-Speech capabilities via the Edbot software tool (not via SCRATCH 2).
0%e the voice of “David” or “Zira” under “Server/Setup” off the main menu bar of the

The usg
Edbot SOOI (?ee Fig. 2.15). The discerning reader may have noticed the check marks for items “Bypass ac-
tive uschNbeid “Available on network” which will be discussed further in Section 2.6 about Python program-

ming with the Edbot tool.

There are 3 speech-related blocks: “Say”, “Say Until Done” and “Current Word” (see Fig. 2.16). The
difference between “Say” and “Say Until Done” is that “Say” won’t wait for the spoken words to be finished
before executing the next SCRATCH block, while “Say Until Done” would wait for the speech to finish be-
fore continuing to the next SCRATCH block. “Current Word” provides the words being spoken or an

19

“empty text” field if nothing is being spoken, and it can be used to provide visual emphasis during speech
operations (see example at this web link http://support.ed.bot/edbot-dream-scratch2.html).

Zeeb eV Hello!

Zeeb say REICHN until done

QY

Fig. 2.16 Edbot’s SPEECH blocks. Q
2.3.5 GENERAL Blocks V‘V

2.4 Using SCRATCH 2 with Edbot Dream Pro

In this section, a variety of SCRATCH 2 projects will be presented in de%with the goal of helping the
reader become proficient at using Edbot blocks to perform selected roloti€s ications with the ROBOTIS
DREAM II system. Where appropriate, the performances between a olution and a SCRATCH-
Edbot solution will be compared to enhance the readers appreciati otics engineering in general.

Due to a long tool-chain (SCRATCH <-> EDBOT <-> S OS <-> BT COMM <-> ROBOT)
which can create communication delays, SCRATCH applicﬁ sually do not perform very well when

sensors data are required at a fast rate for autonomous p®a such as following a random line track, see
an example with a PLAY700 robot (CM-50) at this l&ﬂs://www.voutube.com/watch?v=lwsz uSuRu0).
However, the combination of Edbot V.4.1.979 (g¢newerPand Firmware V.32 (or newer) for the CM-150
provides much performance improvement as trated in the following sub-sections.

2.4.1 Sensor Throughput Perfom@

2.4.2 Motor Control using Si&%ﬁlctuator (SA) Blocks

2.4.3 Motor Control us iple-Actuators (MA) Blocks

To mitigate the tinsing s for activating and deactivating motors attached to Ports 1 and 2, one ap-
proach is to send a “bj ket” containing commands to both Ports using a single SCRATCH block
and once that big p is received in the local memory of the CM-150, we’ll let the CM-150 deliver the
actual comman rts 1 and 2 as normal. But now, as the command sending process is from the CM-
150°s local me , will have minimal time delays as with the binary TASK code - as described in Sec-
tion 2.4

FiQ2.22 displays the Script for Project “AD_Maneuvers MA.sb2” where “Multiple-Actuators” (MA)
blocks are used to send activation and deactivation commands to Ports 1 and 2 “simultaneously”. The same
sequence of commands are issued to make the robot first go forward and straight at 50% power for 1 second
(Lines 5-6), next stop both motors (i.e. the robot) for 2 seconds (Lines 7-8), then make the robot go back-
ward for 1 second at 50% power (Lines 9-10), and finally stop the robot for good (Line 11). Please note that
a positive value for the motor speed produces a counter-clockwise rotation of the motor, and vice-versa for a
negative value of the motor speed (see Lines 5 and 9).

20

‘8 when B¢’ P Multiple Actuators

2 Zeeb connected =

El Zeeb buzzer melody e

Ll Zeeb set motor speeds W

6 1
(8l Zeeb set motor speeds ‘)

8 2 V
Cll Zeeb set motor speeds »)
10

i8] Zeeb set motor speeds

I

Fig. 2.22 SCRATCH Script for Project “AD_]@&V%S_MA.SBZ”.

2.4.4 Variable Speed Motor Control with MA Blocks Q

Reviewing Fig. 2.22, the reader may have already ic@;at the motor speed values were specified as
numerical constants (50 or -50) in Lines 5 and 9, but %ﬂes a Variable Parameter (with such name as

“Speed”) may have to be used, thus somehow weh haveyo incorporate the Numerical Value represented by
the String “Speed” into the creation of those “B{gRata Packets” used in Lines 5 and 9. The SCRATCH’s
JOINT Operator can be used for this purpose a\shoWn in Fig. 2.23 for the next SCRATCH project named
“AD_Maneuvers MAV.SB2”. In this p reader needs to create a User Block (i.e. User Function)
named “Move”, using the “Make a Bl 7 available under the option “More Blocks” of the SCRIPTS
Tab (see Fig. 2.24). If the reader is not {liar with this procedure, please watch the first part of Video 2.4
for a step-by-step tutorial on how tg¥geate and define the blocks used in this User Block named “Move”.

2.4.5 Avoider (R+SC. . Edbot)

The materials in thas S€CYigdl 2.4.5 can be compared to Section 4.5 of the author’s first DREAM book
(Thai 2018) where the SCRATCH 2/R+SCRATCH was used, and it could only support Single-
Actuator blocks.

Video 2.5 slmys that this SCRATCH/Edbot Project makes the robot responsive enough to avoid obsta-
cles in front owever, once the obstacle is removed, the robot was still performing avoiding maneu-
vers fopafeNgglorg cycles before going forward again as it should. Reviewing Video 2.5 more carefully,
the reader wpuld notice that the message “Forward” was displayed quite promptly in the SCRATCH “Stage”
area uporrtne removal of the frontal obstacle. This means that the Edbot tool can handle the “Sensor Data”
flow from the CM-150 to the SCRATCH 2 IDE fast enough for autonomous sensor-intensive behaviors.
However, Edbot somehow handles the “Motor Commands” flow from the SCRATCH 2 IDE to the CM-150
more slowly, perhaps a larger buffer was used for the SCRATCH to CM-150 data flow? As the author does

not have knowledge of the inner workings of the Edbot tool, he cannot say anything for sure.

21

Next, Project “AD_Avoider-IF_ELSE IF 2.SB2” was created with the goal of using the “Current NIR
Sensor Data” directly as arguments inside the various conditional statements IF and ELSE-IF (see Lines 8§,
12, 16 and 20 of Fig. 2.29) with the hope that it would mitigate the previous data flow problems.

when dicked P Avoider Parallel Loops

wait untl Zeeb connected —

Zeeb buzzer melody e
set Speed to ‘
to o * Speed

set ReverseSpeed

set DelayTime () 0.5
+3 e v

repeat until Zeeb left IR raw value

ES\H Right & Back
13

RightBack
—
‘nait DelayTime secs

Zeeb right IR raw value

LIl Forward
»

GoForward

Fig. 2 crlpt for Project “AD_Avoider-PAR_Loops.SB2”.

Lines 9-12 and Lji &denote the two Parallel REPEAT UNTIL loops used. The reader should
also note that the onal Statements used are also simpler (i.e. quicker to execute at runtime) than the
ones used by th; SE IF structures as shown in Figs. 2.26 and 2.29. Furthermore, “Current” Sensor
Data (i.e. Re locks) will need to be used for Loops to work properly (Lines 9 and 13).

e Parallel Loops algorithm requires a Time Delay (Line 7) to let the designated actions play
out (L1 and 16). Again, the user can tune Parameter “DelayTime” to obtain the optimal overall re-
sponse for his or her system. For the author’s robot, 0.5 second was also about the best value to use, values
less or more than 0.5 second made this robot less responsive when the frontal obstacle was abruptly re-

moved.

The Parallel-LOOPs approach also needs the default action (“GoForward”) to be laid out as the last ac-
tion after the Parallel Loops (Lines 17-18).

22

Finally, the Parallel-LOOPs approach has the distinction of using the least number of blocks than the
other two approaches.

Video 2.8 also shows that there is much improvement in responsiveness to random obstacle movements
over the I[F-ELSE-IF structure.

2.4.6 Yin-Yang Track Follower
In a way, this Section 2.4.6 reverses the logical perspective of the Section 2.4.5 as the DREA (»
will now use its NIR sensors to try to follow/track a frontal object.

We are now ready to tackle the Yin-Yang Track Following Project. The Yin-Yang Tragk getd#s name
from the feature that the track switches from Black to White and vice-versa for half of itgftotal Jayout area
(see Fig. 2.35). Analyzing this Yin-Yang track further, the author realized that more Iﬁﬁors are needed
as the background characteristics had to be known in addition to the usual track cha’n%?tics to help steer
the robot onto the “right track™. Thus, two NIR Sensors IRSS-10 were connect@o s 3 and 4 and

mounted to the front of the robot as shown in Fig 2.36.

Section 4.7 of Thai (2018) discussed the details of how to track an arbi @)lack track on a white back-
ground and the essential algorithm reduced to two mutually exclusive e&'t' n/action pairs and one default
action:

1. Ifthe Left IR Sensor sees Black and Right IR Sensor @ hite, then the robot needs to turn
Left to get back to the black line.
2. Else If the Right IR Sensor sees Black and the Q R Sensor sees White, then the robot needs

to turn Right to get back to the black line 9
3. Else the robot needs to go Forward (and th&obot needs to start its trek straddling on the black

line also). ({

Fig. 2.35 Yin-Yang Track.

23

Fig. 2.36 Yin-Yang Track F ollowing@t.

2.4.7 Zeeb-Zob Dowel Search Game

This section assumes that the user has 2 DREA leely Zeeb and Zob for the author (see Fig.
2.43). Zeeb is essentially the Avoider with 2 a sors IRSS-10 on Ports 3 and 4, and Zob is the
Buffalo with 1 added NIR Sensor IRSS- 10 on

Fig. 2.43 DREAM Robots Zeeb (left) and Zob (right).

The goal of this project is to show how easy it is for Edbot to control two robots concurrently and for
SCRATCH to share “control events” between Sprites. The “AD ZeebZob DowelSearch.SB2” Project uses

24

3 Sprites as shown in Fig. 2.44: “Zeeb” and “Zob” represent the respective robots, while the “Cat” repre-
sents the Game Controller.

Sprites New sprite ® ,/ m (O

Q’Q

Zeeb Zob Controller

v

-

Fig. 2.44 Project “AD_ZeebZob_DowelSearch.SB2” uses 3 Sprites: Zeeb, Zow Controller.

2.4.9 Using Servo Motor SM-10 in Video Game %

This project is an adaptation from a SCRATCH example written o &TIS for the IoT system
(http://www.robotis.com/model/page.php?co_id=prd iot). Currentl @ﬁg 2019), the IoT kit is only
available in South Korea. It simulates a Car racing on a Track whi being scrolled up in the Stage Area
of the SCRATCH IDE (see Fig. 2.52). The user can steer the using a Servo Motor (SM-10) as a
Steering Column (i.e. as a rotational position encoder) (see @ 53).

/W, AD-CarGame fe &
Life WD
speed EXID)

Servo Position 7777

X
3

Q Fig. 2.52 Stage Area of SCRATCH IDE for Project “AD-CarGame.SB2”.

25

o —ese \®
WiIeleT -I=] DIRIDID.
2000 » @
¢ =S

@

\ 5 : g O Q(»Q

Fig. 2.53 Servo Motor SM-10 used as a “Steering Column” for Project “AD—CarG@gag).

2.6 Using PYTHON with Edbot Dream Pro y

Using SCRATCH or PYTHON with the Edbot tool provides the same fun ali§ies in controlling the
typical Dream robot. However, with Python, the user can get one step closer to th&yuts and bolts” of the
Edbot tool and learn some more details of the ROBOTIS firmware used on t ream Controller CM-150.
A PYTHON program will require more steps than a TASK or SCRATCH@ am to get the robot to do a
typical action, but its execution speed is much higher and it will allo er to tap into the vast resources
of other PYTHON packages available at the Python Software Fou V&l (https://pypi.org/ and
https://docs.python.org/3/contents.html). The web site Pytho is also a great resource for learning
and practicing Python programming (https://www.pythoncen

Edbot V.5 was a major upgrade which changed fu ly its PYTHON API, thus all sample codes
discussed in this section used the Edbot V.5.0.6. 1280%&1(1&% is assumed to have some basic skills in
Python Programming, if not the author is recompgnding ¥hese books to get the reader better prepared for
materials presented in this section (web resouxces nd for Python also):

e “Python for Tweens and TeegS Computational And Algorithmic Thinking” (Bouras and
Ainarozidou, 2017).
e “Python Crash Course”, 2 jion (Matthes, 2019).

For more in-depth treatment thon, the user is recommended to refer to these works:
e “Programming n 37, 2" Edition (Summerfield, 2010).
e “The Pythgn ard Library by Example”, 1* Edition (Hellmann, 2017).
Documentation fogh bt Dream Python API is available at this web link

user’s PC and pia a short primer on the programming steps needed for controlling the ROBOTIS Croc-
odile and S ots. When the Edbot tool was installed, it created a few Python example codes under
o))

the usep ‘[l ts\Edbot\python” folder:
Qream_airplane.py

dream_crocodile.py
dream_elephant.py
dream_motorcycle.py
dream_scorpion.py

(http://support.ed.bo¥edpot-dream-python3.html). This web page also shows how to install Python on the
1%

26

2.6.2 Avoider-Follower Applications

In this project “AD_Avoider Follower IfElself.py”, we’ll use the Pygame package to monitor the
user’s keyboard inputs and to provide graphical screen outputs at run time. The web site
“https://www.pygame.org/docs/” has all the official PyGame documents that the reader can consult as
needed. If the reader prefers a regular textbook, the author would recommend the work by Kinsley &
McGugan (2015).

The Avoider robot named Zeeb is used in this project and see Fig. 2.70 for a screen capture at rur%b

A

s

AD_Avoider_Follower_IfElself.py Assistant

g? Avoider/Follower

/' import sys
2 dimport time
9 import edbot
16 import pygame
L from pygame.locals import *

Shell
» >

pygame 1.9.4

Hello from the pygame community. https://www.pygame.org/contribute.html
Waiting to control Zeeb... Got contrel of Zeeb!

1) Push key 'a' for Avoider mode or 'f' for Follower mode

2) Tap key 'i' to increase speed or 'd' to decrease speed

Yy
i&or “AD_Avoider Follower IfElse If.py”.

vents

This project had been previously dﬁscribf in Section 2.4.7 for its SCRATCH implementation which
was using the concepts of Event Progra®aahg via “Message Broadcast” and “Message Received” between
3 independent Sprites (Zeeb, Zob at as the Game Controller). The same Event Programming approach
will be used in this Python proj wig Python-equivalent constructs which are “Thread” and “Event” ob-
jects from the “threading” of the Python Standard Library
(https://docs.python.org/3/ /threading.html#). The following web page was very helpful to the author

Fig. 2.70 Screen capture at run

2.6.4 Dowel Search Game using Thr

by providing working ets used in this project: https://pymotw.com/3/threading/index.html#mod-
ule-threading — it is giMgtdined by Doug Hellmann.

This Pytho e84t “AD_ZeebZob DowelSearch.py” uses the same approaches as previous Python
projects rega dbBot robot control and PyGame keyboard/graphics interfacing so only the newer con-
cepts 0 g ¥nd event signaling will be described further in the following paragraphs. If the reader is
intere%rgtextbooks to learn more about “threads” or “concurrency” in general, the author would suggest

Hellma 017) and Nguyen (2018).

27

AD_ZeebZob_DowelSearch.py

Zech-7ob Game

import sys
8 dimport time
5 import random
10 dimport edbot
11 dimport pygame
12 from pygame.locals import *
12 dimport threading

0 ~N O

© def forward(robot_name):
global speed, r_speed
20 ec.set_servo_speed(robot_name, "1/" + str(speed) + "/2/" + str(r_speed))

Shell

Getting out of zob_ search()
winner is 2

Getting out of game end()

Getting out of zeeb_ search()
winner is 2

Fig. 2.86 Runtime Display for %%Z'QlobDowelsearch‘py”‘
Py

2.6.5 Using USB Camera with OpenCV &

Another advantage when using Python wich 1Ny widely adopted language is the large repository of
modules/tools found at the Python Softw. ation https://pypi.org/. This section 2.6.5 would illustrate
the use of the OpenCV module and a r}@ dule called NumPy (https://pypi.org/project/opencv-

it i
17T

python/). If the reader is using Thonn is)recommended to use the “Manage Package” tool to search for
the module “opencv-python” and ingta This process will install all related modules for the reader in one
step. The author is using Open on V.4.1.0.25 and a Logitech webcam C910 for the example pro-

grams in this section (see F%

Fig. 2.90 Zeeb robot with webcam C910.

28

The field of Computer Vision or Machine Vision is large and complex, thus in this section the author is
only trying to show that, with a bit of work, the reader can incorporate Machine Vision capabilities to a
“lowly” DREAM robot. References for Machine Vision, OpenCV and NumPy abound, so the author is only
recommending a few that he is familiar with:

“Learning OpenCV 3” by Kaehler and Bradski (2017), this book is written for the C/C-HL(I%—Q
gramming language but it is a thorough reference to keep.

For Cookbook types of OpenCV book references in Python, the author has used “

OpenCV 4 by Building Projects” by Escriva and Mendonga (2018) and “OpengV 3 puter
Vision with Python Cookbook™ by Spizhevoy and Rybnikov (2018) and hadffound them useful.
Web resources (free and at cost) for OpenCV-Python and NumPy can be, fou any places

and here are a few: ‘V
o https://opencv-python-tutroals.readthedocs.io/en/latest/indeg html
https://www.learnopencv.com/about/

https://www.pyimagesearch.com/
http://www.numpy.org/ and https://docs.scipy.org/dogPy /.

http://cs23 1n.github.io/python-numpy-tutorial/ QV

O
O
O
O

i 7 import edbot
& import time
9 dimport sys
10 import pygame
i 11 from pygame.locals import *
| 12 dimport cv2
| a3 import numpy as np
| a4
| s
| 16
17 #
18 def forward(robot_name):
19 global speed, r_speed
20 ec.set_servo_speed(robot_name, "1/" + str(speed) + "/2/" + str(r_speed))
21
Shell
ROI's std de‘v- (E"x,;s,v) =012
ROT's max (h,s,v) = 112 217 255
ROI's m h,s = 110 205 240
ROI' = 110 212 253
ROI's std de) = Ay
ROI's max (h,s, = 112 216 2bh

QOI'S, min (h,;,v) = 110 204 242
() Fig. 2.91 Run-time Displays for “AD RemoteVision HSV.py”.

29

==
PrINT{ TargeT T

vid_cam.release()

chTdestroyAllwinnows(J Tra Cking Blue

printy arget LE

[]
:::-;::t::;:;;;xdmm” TraCkl ng Ye”OW -
Shel

-
Uig. 2.102 “AD_CameraTracker.py” can be used to track “Blue” or “Yellow” objects.

30

