Programming Guide

For ROBOTIS MINI

(Excerpts)
By Chi N. Thai

CNT Robotics LLC, Buford
2020

Chapter 1: Systemic View of ROBOTIS® MINI™

ROBOTIS releases the MINI kit in 2014 (http://www.robotis.us/robotis-mini/) along with the mobile
App called MINI for iOS and Android/Chromebook OS which can be used at a minimum level for entertain-
ment purposes (https://play.google.com/store/apps/details?id=com.robotis.darwinmini, https://itunes.ap-
ple.com/us/app/robotis-mini/id948481762). But this kit is much more capable, as shown later in this b§ok
when other software tools such as ROBOTIS R+TASK™/R+MOTION™ or EDBOT® are leverag NS
purpose of teaching robotics fundamentals to students at all ages.

The goal of Chapter 1 is to provide the reader with a systemic view of the MINI m% ng

how its varied hardware components integrate with a host of software tools at a high cdn ual level

while leaving the detailed operational details for later chapters. Q
1.1 Components of MINI kit V
In this Section 1.1, the author describes the hardware components that co #h the MINI kit when

purchased, along with additional hardware components that can be used t@xance the use of this robotics

kit.
O

1.1.1 Hardware Controller: OpenCM9.04-C \\

The most important component of any robotics kit is of cots “brain”, i.e. Hardware Controller,
which is the OpenCM9.04-C. The actual microcontrolle cd for the OpenCM9.04-C is an
STM32F103CB with 128 KB of Flash Memory — see b of PCB’s picture on the left in Fig. 1.1 (be-
neath the QC sticker). The partition of this 128 e@ space into various firmware components will

be described in Section 1.3.1.

Fig 1.1 also shows the locations of the ponetits that the user will mostly interact with when using
this Hardware Controller:

o The ON-OFF power sy
e Two connectors for t@ ables coming from the two Li-lon battery cradles LBB-040 or
LBB-041 (see Section .
e Four 3-pin Dyna; 1™ ports where the 16 servo motors XL-320s will be connected to, in a
'%ore details about the term “Dynamixel” are provided in Section 1.1.2).

daisy chain fa&B
The ST microcontroller communicates to the 16 XL-320s via Serial Communica-
1 (USART Ch.1) at a high speed of 1 Mbps, as lots of data throughput are needed

tions C
to c&& ervo motors at the same time.
e F -Purpose-Input-Output (GPIO) connectors for various sensors and the LED module

ction 1.1.6). GPIO ports are connected directly to the I/O ports of the STM32F103CB

1iCypcontroller.
Qne “external” Serial Communications port where the BT-210 Bluetooth® receiver (and other
O -pin compatible serial communications devices — see Section 1.1.4) can be connected. The
< ’ STM32F103CB microcontroller communicates to these devices via Serial Communications
Channel 2 (USART Ch.2) at a slow speed of 57.6 Kbps, as less data throughput is required for
these devices.
e One User Button to be used when recovering firmware for the OpenCM9.04-C and/or the servo
motors XL-320 (see Chapter 3).

e One Micro USB-2 port when recovering firmware on the OpenCM9.04-C and its associated
XL-320s (see Section 1.3.7 and Chapter 3) or when doing advanced C/C++ programming from
a PC using the OpenCM or Arduino IDEs (see Section 1.3.9).

_ Power Switch

Li-lon Batteries
Connectors

Dynamixel Ports for %
XL-320s (4)
GPIO Ports 1-4 for < %

Sensors & LED module

Communications V
Port (BT-210)

User Button V

Micro USB Port

Fig. 1.1 Hardware ControlleN 9.04-C.

The reader is referred to the following ROBOTIS f22d{0r more comprehensive details
(http://emanual.robotis.com/docs/en/parts/controller/g M4/) on many other aspects for the proper us-
age of the OpenCM?9.04-C which will be discussggl witg appropriate in later sections of this book.

ROBOTIS CS also has a YouTube playlisfoNgtorials for the OpenCM9.04 at
nRgF2Cu9r91bU3bHuZU8Fxu

The MINI kit comes with 16 “rea ~320s which are “smart” servo motors allowing it to perform hu-
man-like movements of its arms, and hip joints, and 1 “dummy” XL-320D serving as a component of its
“unmovable” head assembly. @or would recommend readers to acquire a 17" XL-320 so that this head

e trolled (see Section 2.2).

ROBOTIS tradegna;
Servo” because eac
motor (see Fig. 1.

ost of their servo motors (including the XL-320) as “Dynamixel” or “Smart
has a dedicated microcontroller STM8S105K4T6C controlling the actual servo

dallowing each XL-320 to communicate with the Hardware Controller OpenCM9.04-
d (3-pin) communications network shared with other XI.-320s (i.e. USART Ch.1, at a
oked up as a daisy chain (http://emanual.robotis.com/docs/en/dx1/x/x1320/).

rder to distinguish one XL.-320 from another, each XL-320 in the MINI kit was pre-assigned
a uflique rom 1 to 16 (see Section 2.2 for how to handle the situation when the reader decides to get that
17 20). This arrangement allows the user to issue a simple assignment command such as “ID[17]:
Goal Position = 512" to make the Head Servo (ID = 17) to go to Position 512 (i.e. commanding the MINI’s
head to face forward), without the need to program at the actual hardware level using Pulse-Width-Modulation
(PWM).

Moreover, Hardware Controllers such as the OpenCM9.04-C are also considered as Dynamixels with a
specially assigned ID = 200 when using ROBOTIS provided software such as R+TASK, R+MOTION and
OpenCM IDE, and consequently there can only be one Hardware Controller within each local wired Dy-
namixel network (i.e. for each ROBOTIS robot). In other words, the user should not use ID =200 for any of
the XL-320s used.

PCB for XL-320 m

Fig. 1.2 Printed Circuit Board (PCB) for XL-320. VV

%ﬁeel spinning CW or CCW)
iflon), but the Continuous-Turn
obot. However, the author will
r the reader’s benefit in Section 6.3.

The XL-320 is capable of 2 modes of operations: Continuous-Turn ’(i.e
or Position-Control (i.e. as a true servo maintaining a given rotatio,
mode is obviously not appropriate for the MINI kit which is a hu
demonstrate the use of the 17" XL-320 (Head’s servo) in both mo

Let’s next look into how does the XL-320 “know its rotaosition” at any one time:

e The left picture in Fig. 1.3 shows the in f an XL-320 that had been disassembled to
show that when the Servo Motor tums,% Train transmits this rotational motion into the
Horn (i.e. to move the MINI’s head g8r exalyple) and also into the Position Encoder below it.

e The middle picture in Fig. 1.3 s &e PCB with the Position Encoder’s cover removed (far
right picture) so that its actual hattsm is exposed. This Position Encoder is essentially a
rotational potentiometer ugj hite rings. The inner ring is continuous and serves as an
analog voltage input sig microcontroller STM8S105K4T6C to digitize and send the
resulting numerical value esent Position” to the OpenCM9.04-C. This “Present Position”
value can then be us%he user’s control program. The outer ring is “discontinuous” with one

end connected to | ground and the other connected to Vpp = 7.4V, and because of this
discontinuity 0 can only provide positional information for only an arc of 300 degrees

out of 360 d possible for a complete circle.
.

Outer Ring Electrode

Fig. 1.3 Details of a Disassembled XL-320.

1.1.3 Batteries: LB-040/041
1.1.4 Communication Hardware: BT-210, USB & Others
1.1.5 Frame Parts & Mechanical Assembly

1.1.6 Compatible Actuators & Sensors (Port Concept)

The MINI kit does not include any sensor at all, but the OpenCM9.04-C can handle a variety of serf§o Q
and an LED module through four 5-pin GPIO connectors as shown in Fig. 1.1. For a list of compatj e

vices for each specific connector/port please check this web link
(http://emanual.robotis.com/docs/en/parts/controller/opencm904/#robotis-5-pin-port). For exa@n this
book the author uses 2 NIR sensors IRSS-10 (http://www.robotis.us/ir-sensor-irss-10/) m{e%on ither

side of the MINI’s head and a DMS-80 on the top of its head (http://www.robotis.us/dist#gce-nfeasuring-
le the DMS-

80 is connected to Port 2 and typical programming commands to access them are of th
“Left Head Sensor = PORT[1]:IR Sensor”, i.e. to read Port 1 for an IR Sensor 1
ized value into Parameter “Left Head Sensor”.

sensor-dms-80/) (see Fig. 1.4). Internally, the IRSS-10s are connected to Port 1 and gort >
t

to save this digit-

Fig. 1.4 MINI r@a with 2 IRSS-10s and 1 DMS-80 mounted on her head.

1.2 MINI Software Jo

%ware tools that work with the MINI and they can come from ROBOTIS as free
r organizations or vendors which can be free or need to be purchased separately (see
TIS tools of course have extensive documentations at their e-manual web site

OBOTIS Provided Software

ROBOTIS offers many software tools that work with the MINI for free at their web site http://en.ro-
botis.com/service/downloadpage.php?ca_id=10, notably:

e R-+MANAGER V.2 which works only on Windows OS (or macOS with appropriate Windows
Virtualization software).

e R+TASK and R+MOTION used to be 2 separate components for Versions 1 and 2 (Windows,
Linux and macOS). In Summer 2019, ROBOTIS decides to upgrade and combine these two
packages together and calls it R+TASK V.3 (see Fig. 1.5). R+TASK V.3 works with Windows,
Android/Chromebook and macOS. This book uses R+TASK V.3 and the Windows version can
be directly downloaded from this link (http://www.robotis.com/service/download.php?no=1774).
Mobile versions of R+TASK V.3 can be downloaded from these lin
(https://play.google.com/store/apps/developer?id=ROBOTIS or https://apps.apple.com/us/
oper/robotis-co-1td/id948481761). ¢

e R+DESIGN as previously mentioned in Section 1.1.5 works on Windows, 10O -
droid/Chromebook.

e DYNAMIXEL WIZARD V.2 which works with Windows, Linux and acOS
(http://emanual.robotis.com/docs/en/software/dynamixel/dynamixel wizard2f).

e For Mobile Apps (i0S and Android/Chromebook), the reader is already awa e ROBOTIS
MINI App, but the reader probably does not know that the R+m.PLAWp (10S and An-
droid/Chromebook), originally designed for the PLAY700 kit (i.e. H&§dward™Montroller CM-50),
does work fine with the OpenCM9.04-C using the TASK’s SMART IM features (see Chap-
ter 7). The reader can download R+m.PLAY 700 to his or hers cc%ible mobile device at these

web links (https://apps.apple.com/us/app/ /@ef1d1156037721, or
https://play.google.com/store/apps/details?id=com.roboti).

e For more advanced users using C/C++, they the package OpenCM IDE
(http://emanual.robotis.com/docs/en/software/opencm betting_started/) which can be pro-
grammed to work with the R+m.PLAY700 App. IDE works on Windows, Linux and
macOS, unfortunately ROBOTIS is no longer ﬂ ¥ing this package and is promoting the use

of standard ARDUINO interface with t ols called Dynamixel SDK and Dynamixel
Workbench (http://emanual.robotis.co software/arduino_ide/) which work on Win-

dows, Linux and MacOS. &

ROBOTIS MINI

Fig. 1.5 Main Menu of the new R+TASK V.3.
1.2.2 ROBOTIS Partner Software

Currently, the author is aware of only 1 commercial software tool that works with the MINI and it is
called EDBOT from Robots in Schools Ltd. (http://ed.bot/edbotsoftware). EDBOT runs on Windows, Mac,
Linux (including Raspberry Pi) and Android/Chromebook. EDBOT allows the use of several development

tools such as SCRATCH 2/3, Python, JavaScript and C# (http://support.ed.bot/) to work with ROBOTIS
firmware and Motion files. A unique EDBOT feature is that it will allow the user to control several MINIs
in the same user program in the languages listed above (https://www.youtube.com/watch?v=yUpx42eNR2I).
Chapter 8 of this book will provide the reader with a firm foundation in using EDBOT V.5 with SCRATCH
and Python.

The Synthiam organization supports the MINI with their free EZ-Builder environment (compatible WitQ
ARDUINO IDE tools from ROBOTIS) but it requires a different firmware than the standard one from
ROBOTIS (https://synthiam.com/GettingStarted/Build-Robots/Robotis-OpenCM-9-04-17530). Thj

good project for an advanced reader who wants to go beyond the standard MINI, with video cam%o

and speech recognition for example (https://synthiam.com/GettingStarted/Build-Robots/Roboti#$D

Mini-17529)

The European Poppy Project uses the XL-320s but with their own controller (Raspbe@ frame parts
and free development software environments (https://forum.poppy-project.org/t/gettifyg-staricd-with-poppy-
project/362). This is also a good project for an advanced reader who wants to g% e standard MINI.

9

Section 1.2 shows that there is quite a variety of software tools thy Ork with the MINI, and spe-
cific configurations of the firmware components on the OpenCM9.QdiNg11l be needed for these software
tools to work properly. In this Section 1.3, the author will limi Qu iscussion to the operational char-
acteristics of ROBOTIS provided software tools and EDB

1.3 MINI Operating Configurations

The most important point of reference to understangaght @ ous MINI operating configurations is the
Memory Map of its 128 KB of Flash Memory, so tha @ eIc we are going to start next.

1.3.1 Memory Map of OpenCM?9.04-C

The Hardware Controller (HC) OpenCM 4— as 128 KB of Flash Memory partitioned out as shown
in Fig. 1.6:
e The Boot Loader and EE memory sections cannot be altered by the user.
e When the MANAGER too sed to recover or update the OpenCM9.04-C’s firmware, the

memory sections ro@dress 0800-3000 and up to 0801-F800 are overwritten with new data
(see Section 1.3.77.

OpenCM9.04-C

a
Firmware Component

A Boot Loader 0800 0000 12
ROBOTIS Firmware 0800 3000 42
Q 1 ROBOTIS TASK 0800 D800 8
: O ROBOTIS MOTION 0800 F800 64
EEPROM 0801 F800 2

Fig. 1.6 Memory Map for the 128 KB Flash Memory of OpenCM9.04-C.

Start Address Size in KiloBytes

1.3.2 Using MOTION 3 Component

The MOTION and TASK tools are designed to work together for a humanoid robot such as the MINI,
but in the previous 2 versions they were provided as 2 separate applications using the same Serial Communi-
cation Port, so it was quite bothersome to switch back and forth to the proper COM Port when the user
wants to develop a custom MINI project which usually requires both TASK and MOTION tools to be run-
ning. Then in Summer 2019, ROBOTIS releases R+TASK V.3 which combines TASK and MOTION intoQ
1 application (see Figs. 1.8 and 1.11) and resolves that long-standing annoyance (if the user does not e
the “Synch” mode inside MOTION 3 Component - for more details on the “Synch” mode see Cha@.

EMotion Unit
PR

a5 >

Fig. 1.8 MOTION 3 ComponeowTASK V3.

Q.

1.3.3 Using MINI Mobile App
ROBOTIS has published instructional in aNgn for the MINI Mobile App at this link http://eman-
ual.robotis.com/docs/en/software/mobile 4 i_app/.

The user can use this App to do s@ ic tasks:
e Do an Assembly Check of t INI and adjust each servo’s OFFSET value.

e Associate a butto App Interface to a specific MOTION LIST via its DEFAULT

MOTION IN ER. Thus, the user needs to make sure to use the MOTION tool to
download the d example MOTION GROUP to the MINI before using this App (espe-
cially if ghe mehow had to recover the firmware on the OpenCM9.04-C, as this action

would isting MOTION data and TASK code).
e Assoc % user gesture to a specific MOTION LIST.
o T oice Recognition to activate a specific MOTION LIST.
. essenger’s notifications to activate specific MOTION LISTs.
WApp also offers a Virtual Controller interface for the user to access the Soccer or Fighter
odes.

1.3.4 Using TASK 3 Component

As previously mentioned, the new R+TASK V.3 application combines into one interface the two tools
TASK and MOTION that used to be separate software packages. In this sub-section, the TASK 3 Compo-
nent is described in general concepts and features (see Fig. 1.11) while Chapter 6 will take the reader into

more detailed usage procedures.

TASK V.3 kept the functionalities of TASK V.2 which are documented at this link Q
(http://emanual.robotis.com/docs/en/software/rplus2/task/) and added a new command for the Open .Oft-
C controller:

e POLYNOMIAL,ie. “2=2+2-2)*2" (}
Please note that TASK is the “true” programming tool to use for controlling the algorgfhmic befavior of
the robot, while MOTION is more of a generator of data as MOTION UNITs and MOTIRN LIPTs:

e The TASK 3 Component provides all programming flow control stmctufw as Sequence,
Condition, Loop and Function, but no explicit arrays are supported. roydes one
CALLBACK function which is activated by the hardware timer evgry W ms (which interest-

ingly is the same value for the smallest TIME STEP allowed bet consecutive MOTION
KEY FRAMES - see Section 1.3.2). °

1 STARTPROGRAM

s

s (@ MotionIndex Number =

« WAITWHILE ((@ MotionStaws sz TRUE (1))

» [DI17):EY Goal Velocity = CCW:128 (1251
v B IDI17):6) Goal Position = 400

" 1§ High-resolution Timer = 0.5

L] WAITWHILE ({ High-resolution Timer >)

w |ENDLESSLOOP

a

WAITWHILE () Remocon Data Arrived zz FALS)

1.3.5 Using 00 Mobile App (with TASK)

‘\Q Fig. 1.11 TASK Component of R+TASK V3.
\ ii

The R 00 Mobile App was released in 2016 and it was originally designed for the CM-50
which is ware Controller for the PLAY 700 kit (http://www.robotis.us/robotis-play-700-ollobot/,
mmw .robotis.com/docs/en/edu/play/play-700/), but the OpenCM9.04-C can use this Mobile App as
https?

welRvia fpe SMART DEVICE commands as part of a TASK program (see Fig. 1.13 and YouTube video
.youtube.com/watch?v=Z0JeShxiolc). Chapter 7 will take the reader into the details of using
these SMART DEVICE functions.

Fig. 1.13 Example of an OpenCM9.04-C carbot using TASK V.2 and R+m.PLA (L

1.3.6 Using EDBOT 5

EDBOT (http://ed.bot/edbot) is a software tool designed to use ROBOTIS MOTIPN dgta and to issue
direct commands to the OpenCM9.04-C Firmware with non-ROBOTIS softwareguch RATCH, Py-
thon, JavaScript or C# (i.e. EDBOT puts the OpenCM?9.04-C into “Manage” It can be purchased
at https://shop.ed.bot/collections/products separately if the user already posse INI kit
(https://shop.ed.bot/collections/products/products/edbot-software), or together a completely assembled
MINI robot equipped with one NIR sensor (https://shop.ed.bot/collectio ducts/products/edbot).

EDBOT is currently at Version 5 and it can be freely downlo K, http://support.ed.bot/edbot-soft-
ware-download.html but it won’t work properly until the user ob& install key from the parent com-

pany Robots in Schools Ltd. EDBOT works on Windows, Li acOS and Chromebook. It is a “server”
tool so it can be used to control several MINI robots con in the same Bluetooth network (see Fig.
1.14 and YouTube video at https://www.youtube.com/ yUpx42eNR2I). Chapter 8 will show the
reader how to use the EDBOT tool with SCRATO@ HON.
[T g l - Sopts | Gorhamas andy
VJ. \E
,;;fz]
= o)
e =S .

= ;
\.14 Example of a SCRATCH application with EDBOT Tool.

R 2 (Windows OS)
YNAMIXEL WIZARD 2

ng OpenCM IDE & Arduino IDE
.10 Using OLLOBOT SDK

10

1.4 Dynamixel System Design Paradigm

By now, the reader is probably overwhelmed by the various options to operate the MINI, thus the goal of
this section is to provide an integrative view of all ROBOTIS Educational Robotics kits - a sort of a zoom out
to see the “forest” so that the reader won’t feel lost among the “trees”!

To be clear, the following materials are the author’s personal view and understanding of ROBOTI# SW-
tems from his many years of using them. Officially, ROBOTIS so far had not published any detgs %
their robotics system design approach, although they did patent the concept of “Dynamixel”.

The author believes that the MINI kit shares into a common ROBOTIS Dynamixel Syn Para-

digm which considers a typical ROBOTIS robot to be a Computer Network with four majocofponents:

1) A Hardware Controller, e.g. OpenCM?9.04-C for the MINI, which is the “M rain’tor the robot
(Dynamixel ID = 200). It contains a firmware to allow low-level functionalities andaddifionally stores the

user-programmed instructions for the robot to execute at run time. V
2) The Sensors component which helps the Hardware Controller get in atigW about its environment,
from a simple sensor such as the Color Sensor RCS-10 (connected to local I/O s of Hardware Controller)

to a more complex sensor such as the IR Sensor Array (from Bioloid ST it) which requires its own em-
bedded controller with its unique Dynamixel ID.

23
3) The Actuators component which allows the Hardware % er to perform the appropriate robot
actions upon the real world as programmed by the user, from geared motor such as the GM-10A to
the more sophisticated dual servo module such as the 2X -T with its own embedded controller and

Remote Device has a more flexible role dependi specific device used and on its current role in this
e, if dsmartphone (running the MINI App) is used with the
ote Controller (i.e. a “glorified” Sensor) telling the Hardware
otf the phone screen had been pressed by the user. However, if
the same smartphone (running the 700 App) is used with the MINI, it can additionally act as an
Actuator displaying appropriate @s r videos as commanded by the OpenCM9.04-C according to its
TASK programmed logic (see Ch). When a desktop PC is used as a Remote Device, the interactions
become more complex. For ple, if the TASK’s Virtual Remote Controller is used (see Fig. 1.16), then
the PC acts as a glorified¥¢ informing the Hardware Controller about which “U-D-L-R-1-2-3-4-5-6”
buttons had been pushgf™ user. However, if the SCRATCH-PYTHON/EDBOT tool chain is instead
used on the PC (see (AN
PYTHON codes®*y he PC, and not on the OpenCM9.04-C which now has a secondary role as it is just
letting SCRA -
tuators and oM (via the OpenCM9.04-C’s Firmware).

X

unique Dynamixel IDs.
4) A Remote Device (Dynamixel ID = 100%@ be a mobile device or even a desktop PC. The

network of robotic components. For exa
OpenCM9.04-C, it can act as a BlueToo
Controller about which U-D-L-R Tou,

11

Chapter 2: Kit Assembly Tips

The MINI kit comes with a Quick Start manual to guide the user in the assembly of the MINI robot.
The author recommends the user to also use the R+DESIGN software for certain steps that may be unclear
in this Quick Start manual as it can only show one view angle of the 3D sub-assemblies, while this view an-
gle can be controlled by the user inside R+DESIGN (see Fig. 2.1 and Video 2.1). However only the Quick
Start manual would show the proper routing of the 3-pin cables connecting all the XL-320s into a daisy,

cess easier for the first-time builder. The reader is recommended to read Section 2.1 befo apting
on building the MINI robot for the first time. Q

chain.
The goal of Chapter 2 is to offer some practical information to make the robot constrl@
S

2.1 Preparations Before Assembly

Depending on the user’s needs such as planning to use the Micro-USB port or toWe the head piece
and/or use extra ROBOTIS sensors, certain steps have to be performed in advanc\of t< construction phase
of the MINI robot as shown in the Quick Start manual.

2.1.1 Creating USB Access Slot

"

If in addition to the regular MANAGER/TASK/MOTION tools, @%ed user plans to use the
OpenCM IDE, then this user would need to access the micro USB “ pWthe OpenCM9.04-C at all times
and this will require the user to create an access slot on the g/rame part DMF-BO1 (see Fig. 2.2).
This slot can be created using a drill bit or any other rotating tool.

Fig. 2.2 Micro US@ into MINI frame part DMF-BO1.
2.1.2 Firmware Update and Recr@

2.1.3 Dynamixel Check

2.1.4 Optional Sensors é

/ IRSS-10s i

Fig. 2.5 Attaching IRSS-10 and DMS-80 Sensors to MINI Head Part.

12

2.2 Assembly of Head Servo

The MINI kit comes with a “dummy” XL-320 for its Head subassembly, but for this book the author
needs it to be motorized so it can be swung right and left, and along with the NIR Sensors on both sides of
its head (Section 2.1.4), an “object scanning” feature can then be developed (see Chapter 6).

The author had created a video to help interested readers with the addition of this Head Servo to the
standard MINI robot at https://www.youtube.com/watch?v=rVBDah3DjDQ. (L

use a smart phone (either Android or iPhone). The author used some Dual-Lock tape to attac older
Samsung S2 to the robot (see Fig. 2.6) and the reader can see that the extra weight made thgrObot le%in further
forward. This effect would need a readjustment of the various offset values of the servojserying as ankle,
knee and hip points of the MINI before the default MOTION PAGEs, as pro
MOTION tool, can be used (see Section 4.4 and Chapter 7 for more details),ﬁspec the ones used for

2.3 Mobile Device Attachment m
To use the R+m.PLAY700 with the MINI (via TASK programming — see Chapter 7), ones ‘% to

walking. Thus, the user is recommended to use the smallest and lightest smartpho sible.

Fig. 2.6 Attaching a mobi@@\ to the MINI robot will make it lean more forward.

2.4 Post-Assembly Troubles@

13

Chapter 3: Using MANAGER (Windows OS only)

The MANAGER V.2 tool (http://emanual.robotis.com/docs/en/software/rplus2/manager/) is designed to
allow the user to perform a comprehensive hardware/firmware check on the entire MINI robot. This capability
had been useful to the author to troubleshoot actuators and sensors when they did not seem to work properly,
and to determine that it was due to actual hardware malfunctions and not to some programming errors t
author may have done inside TASK or other programming IDEs.

The goal of this Chapter is to get the reader familiarized with the main feature
MANAGER V.2 and to show how they are related to the complete Control Tables of t
C and individual XL-320 actuators as well as other ROBOTIS sensors. The reader®s plgp shown a
preview of how to access some features of R+TASK V.3 before using them fully lCin CMapters 4 and
6.

3.1 Connection Options between PC and MINI robot

The MINI kit comes with the BT-210 Bluetooth Receiver and a micro CgPle which can be used to
connect to the MINI’s Hardware Controller OpenCM9.04-C, however therg are 3¥ier connection options that
provide other advantages (and disadvantages) such as the BT-410 Blueto@t and LN-101 USB Dongle.

.
3.1.1 Using BT-210

The BT-210 is provided to the user with the purchased M xland it is based on Bluetooth 2.0 which
1 onnected to. Furthermore, all users of the

uses more electrical power from the Hardware Controller{hgag

BT-210 could not use this receiver with ROBOTIS prg @ boftware for most of the year 2018 due to a
Windows 10 update which was not compatible withghe l@ PT0. Since Spring 2019, ROBOTIS upgrades the
BT-210’s firmware and this BT-210’s problem 4@ Lo ®Xists with ROBOTIS controllers such as the MINI,

but who knows, this issue may pop up againgn th&q{uture! Pairing the PC’s Bluetooth server to the BT-210
receiver on the bot is done via the normal ﬁoth etup tool from Windows OS.
Fig. 3.1 shows that the BT-210 woul&ghoW up as a “Bluetooth Serial Port” inside MANAGER which

only uses the 57.6 kbps rate al ite a few connection speeds are available for the BT-210
(http://emanual.robotis.com/docs/@n/pagS,communication/bt-2 10/#specifications).

The BT-210 is not compatible 10S devices, so if the reader intends to use i0S devices and the R+m
mobile versions of TASK, TION or the MINI App, then the reader needs to invest in getting the BT-
410 receiver and the BT- K dongle (see Section 3.1.2).

BT-410 Dongle

The user m have the BT-410 (http://emanual.robotis.com/docs/en/parts/communication/bt-
410/) because! she wanted to use the MINI mobile App on iOS devices such as iPhones and iPad. Then

in order t ANAGER on a Windows PC, the user would need to also purchase the BT-410 USB Don-
gle (https{enyandhl.robotis.com/docs/en/parts/communication/bt-410-dongle/). The BT-410 Dongle would

b sing Micro-USB Cable

good Micro-USB cable, i.e. one capable of doing data transfer reliably in addition of a power charg-
ing capability, can allow MANAGER to connect to the OpenCM9.04-C Controller from a PC. However,
the Micro-USB cable is incompatible with the BT-210 and BT-410 receivers, so the author uses the micro-
USB cable with MANAGER only in the situation when all Bluetooth connections are not possible with the
OpenCM9.04-C. Furthermore, using the micro-USB cable requires the practitioner to create an access slot to
the torso frame part of the MINI robot (see Section 2.1.1). The OpenCM9.04-C would show up as

14

“ROBOTIS Virtual COM Port” when the Micro USB connects the PC to the OpenCM-9.04-C, and only the
57.6 Kbps rate is allowed with the micro-USB cable via MANAGER (see Fig. 3.3).

3.1.4 Using LN-101

The LN-101 (http://emanual.robotis.com/docs/en/parts/interface/In-101/) is a USB device and the second
wired option that the user can use when the Bluetooth options are not possible. The BT-210/410 Recl
also need to be removed from the OpenCM9.04-C’s 4-pin Communication Connector (see Fig. 1.1
the 4-pin cable of the LN-101 will need to go to that same connector. From the author’s persona erfggees,
he had found that the micro-USB cable connection gets flimsy with use, while the LN-101 d pin
connections always.

3.2 Main Features of MANAGER V.2

Three main features are shown for MANAGER in Fig. 3.5, although only “Updat st” and “Firm-
ware Recovery” are currently operational. The “Self-Checklist” option just takeS\e uger to a temporary
web site. V

3.2.1 Using “Update & Test” %

3.2.2 Using “Firmware Recovery” . 0
3.3 Using MANAGER on completed MINI \\'

nect MANAGER to it to prevent any unforeseen servo ma ion from making the MINI collapse and
damage itself. Once MANAGER connects successfull OpenCM9.04-C, the user should see a screen
such as the one shown in Fig. 3.7 and the user ng¢ NafCber to scroll down to see all servos listed. If
some servos are missing, this may mean that som connections may be loose or that some servos have
become non-operational, and sometimes a ware ®covery would solve this later problem but remember
the “ID = 1” issue mentioned in Section §2.2NPnce again, the user needs to remember that the full range of
servo positions [0 — 1023] are not avag ue the mechanical constraints of the MINI’s framework, i.e. the
user should try to vary the servos’ci) s only a little bit at a time while watching for possible jam situa-
tions.

In this situation, it is best to lay the MINI flat on its b%@ront side before turning it on and con-

15

Chapter 4: Using MOTION Tool

As previously mentioned in Chapter 1, the current V.3 of the MOTION Tool is combined with the
TASK component into a single application called R+TASK V.3, available in Windows, Android and Mac
OSes (http://www.robotis.com/service/downloadpage.php?ca_id=10). This integration allows a more effi-
cient way to create, test and program MOTION data sets. The technical manual for R+TASK V.3 is availa
ble at (http://emanual.robotis.com/docs/en/software/rplustask3/). This e-manual contains the step—by—s%

instructions for all basic features of the TASK and MOTION Components for R+TASK V.3, thus thadoo
will not try to re-write these How-To’s but only to refer to or expand on specific ones as needed.

The goal of this Chapter is to get the reader familiarized with the concept of “MOTION” fsgjm-
plemented by ROBOTIS and get in some practices in creating KEY-FRAME, MOT -UNW,
MOTION-LIST and MOTION-GROUP.

- _» Real Robot Not Connected V
v 3 Y

‘Greet 2” MOTION-UNIT.

quick tour of the Motion Editing features
T this chapter.

Fig. 4.1 A predefined POSE/KEY-FRAME fm

First, the reader is recommended to view Vidgg
of the MOTION V.3 tool before reading on the res

The ROBOTIS MOTION data structure is#fNe complex and requires several layers of understanding to
be proficient at it. There are two fundamentalNgonc®pts that need to be understood clearly: a POSE/KEY-
KEY-FRAMEs:

FRAME and a TIME-LINE (i.e. timin,
e Creating head/arm/leg m@gemdts for the MINI is very similar to making cartoons which are
essentially multiple “seque®wefl” frames of “static images” that have minor changes done to the
“object(s) in motisn’ ch frame. Each of these static images of the MINI is called a POSE

1-dimensional array of positional values (i.e. angle values from -300
es) of the various servos used on the MINI. This array uses the servos’

IDs (1 to 17, case of the MINI with head joint) as its array index (see left side of Fig. 4.1).
e Whent | MINI robot performs these predesigned movements in real time, the

Open needs to have the poses for each of its servos updated every 7.81 ms (a hard-

wa uirement) (Note: human muscle signals get updated every 4 to 50 ms). Fortunately, the

tool does not require the user to predefine robot poses every 7.81 ms, so the user
to only define Key Poses, also referred to as KEY-FRAMEs, on a TIME-LINE every few
conds apart or so (see Fig. 4.3). Then, at run-time, the OpenCM?9.04-C firmware will gener-
< ’ ate as needed INTERPOLATED-FRAME:s between adjacent KEY-FRAMEs for every 7.81 ms
time interval. This procedure “guarantees” that going from 1 KEY FRAME to the next will
keep up with the time schedule of KEY-FRAME:s as defined by the user on the TIME-LINE.

16

4.1 Motion Data Structure and Motion Design

For this section, we’ll just use the simulated 3D graphics MINI robot and we won’t need the real
MINI until Section 4.4. Let’s first explore various components provided by the MOTION tool to make this
Motion Programming work possible using the Default Example Motion File for the MINI, Thus would the
reader please run the R+TASK V.3 application and open up the MINI’s Example Motion File with Head
Joint (see Fig. 4.2). This would take the user to the MOTION-UNIT Window (partially shown in Fig. 4.3 Q
which can also be reached from anywhere inside TASK 3 by pushing F4 on the keyboard

R*vsk a O D g M L

ROBOTIS-MIN (head joint)

.'u

\,\-ﬂ“
Lpe

Connegt,

et N o J |

\d

"\
Fig. 4.2 Opening the MINI’s Example Motion with Head Joint.

4.1.1 Key-Frame, Time-Line & Motion-Unit Q
4.1.2 Basic Motion Design Concepts Q‘O
4.2 Motion-Units’ Flow Control with Motion-J#ist T
For this section, we’ll also just use the
sider the MOTION-UNITs to be the diffe

hics simulated MINI robot. In a way, we can con-
OTION LETTERS” in a user-defined “MOTION
ALPHABET”, and the MOTION-LIS tool to create “MOTION WORDS” from these “MOTION
LETTERS”. The MOTION-LIST to@e accessed from anywhere inside TASK 3 by pushing the F5
key (see Fig. 4.14). Officially ROBO med this tool “MOTION”, but the author added “LIST” to cre-
ate “MOTION-LIST” to distingug€hgt from “MOTION-UNIT” and “MOTION-GROUP”. In older
ROBOTIS documents (e.g. fo V.1), “MOTION-PAGE” was used to refer to the same data construct
as “MOTION/MOTION-

4.2.1 Basic Use& (Llst) Tool

The MOTIO o by default opens on the first item which happens to have only 1 MOTION-
UNIT i.e “Initi 1t10n” of course other MOTION-LIST items may have a combination of MOTION-
UNITS as s in Juter paragraphs. The most used menu buttons are shown in Fig. 4.14:

4.3 @ Organization with Motion Group

he 1fext level of organization is with the MOTION-GROUP tool which can be accessed by pushing F6.
The TON-GROUP tool can be used to gather user-chosen MOTION-LIST Items into different MOTION-
GROUPs, although only one MOTION-GROUP can be downloaded to the MINI at any one time (see Fig.
4.22).

17

4.4 Servo Offset Calibration

In this section, we will need to use the real MINI robot in synchronized mode with the MOTION Tool
which can be achieved with the following procedure described in Fig. 4.25:

e Push F10 to connect MOTION to the MINI with the proper Bluetooth COM Port.
e Next, push F9 to synchronize the 3D graphical robot to the real robot. Q
e Next, PLAY the MOTION-UNIT named “Calibration” provided by the author in his file
“MINI_Custom.mtn3” (it is located towards the bottom of the Motion Units list).
e Then, if the MINI robot had been well constructed, the real robot would match its po ’h
3D graphical robot as shown in Fig. 4.25. This means that for this given MINI robd§, the -
ing OFFSET POSE is properly set, but where can we find this so-called OFFS P@

4.5 Motion Creation Practicum

When the author first saw the Motion Unit “Greet 2” (see Fig. 4.30), it remindeWa “Crouching
Bow” move made by practitioners of one of the Escrima schools in the Phillippings wheNas

1. The arms usage is reversed, i.e. left arm in the back and right arm jg fro
2. The right first is also raised to the forehead level.
3. The left leg is shifted to the back to yield a slight crouch o#th§ bogly with the right knee bent.

v T T S N T
KFi75 KF$150 KF-275 KF{350 KE-
| \] Uy, vl ' 1 o
oba
T 2, Modlf;‘canons wanlgd . ﬂ
3 1. Switch arms - right in front, left in back.
2. Right fist at forehead.
2 -ea7 ? 1 3. Left leg back, in a slight crouching position.
9 i .
5 .) 7 ’al E e/
6 5859 7 7 20t L
;e |
9 -7939 ? ?
o e2m ER] R,
B3 1 2 m’viﬂ §
2 13 7. @ %

the toes pNIMC] leg to reduce its contact area with the ground and to get it ready to be slid

back t rear.
2. A ﬁft leg slides to the back, the right knee also bends to lower the whole body. At the
tinge the arms move appropriately (left arm to the back and right arm to the front).
3 oves timing would have to be such when the body gets to the final crouching position, the
Qj oht first also reaches the forehead level (i.e. key frame KF-150 in Fig. 4.30).

thor immediately realized that the MINI robot had “rigid” feet, i.e. “no toes curling” was possi-
ble, so he had to figure out a different way to reduce the contact area of the MINI left leg in order to slide it
backwards. In theory, the rest of the maneuvers should be feasible via the MOTION Tool from what we
have seen so far. The reader may also review various editing techniques by consulting with the materials
presented at this web link http://emanual.robotis.com/docs/en/software/rplus2/motion/#edit-motion-unit3d-
robot before continuing with the rest of this Chapter.

18

The author divided this project in three parts:

1. Modify “Greet 2” into “Crouching Bow 1” whereas the bowing moves stayed the same except
that the arms were switched so that the left arm went to the back while the right arm went to the
front (with no changes to the feet servos).

2. Modify “Crouching Bow 1” into “Crouching Bow 2 whereas KEY-FRAMEs KF-150 an -
275 would now make the MINI robot raise its right first to its forehead (also with no chan@
the feet servos).

3. Modify “Crouching Bow 2” into “Crouching Bow 3” by adding the feet maneuv
MINI robot into a slight crouching position by KF-150 and then to stand bac
This would be the most complicated phase of this project as the real MINI rdbof cguld not be

allowed to fall during these leg moves.
4.5.1 From “Greet 2” to “Crouching Bow 1” C)
4.5.2 From “Crouching Bow 1” to “Crouching Bow 2” V
4.5.3 From “Crouching Bow 2” to “Crouching Bow 3” V
9

4.6 Motion Editing vs. Motion Programming .

ROBOTIS literature has always been careful to use the word&é&N EDITING” when referring to
the usage of the MOTION tool, and the MOTION FILE is cong s DATA. Only a TASK file (see
Chapter 6) is considered as a “real” robot control PROG in the author’s opinion, the MOTION

tool does support the 3 fundamental control structures use 1 computer programming languages, albeit
in a limited way:
1. SEQUENCE CONTROL — When W%lth MOTION-UNITS, the user learned how to se-
0g

standard computer programmi ee Fig. 4.3). The user also learned how to account for the
laws of Physics which is usu included in Computer Science lessons for beginners.

2. REPETITION CONTRO n working with MOTION-LIST/PAGEs, the user learned how
to use the COUNTINgF LOOR (see Fig 4.18) and the ENDLESS LOOP (see Fig. 4.21). Only
the CONDITIONAL RQOJ) (WHILE loop) is not implemented in the MOTION tool.

3. SELECTION CONTROL — This concept is introduced to the reader in a “sneaky” way via the
use of the EX@ ION UNIT by way of the buttons STOP (F8) and EMERGENCY STOP

quence the robot’s poses in a (.:h& ra1y sense instead of a mathematical logic sense as in
n

(F9) (see {igng Ny
Thus, the authopMaWN that it is reasonable to associate the concept of MOTION PROGRAMMING
with the MOTIO the reader happens to be an instructor or teacher, he or she may be interested to
know that the 0 noticed among his robotics students that their MOTION PROGRAMMING skills
are indepen fr¥m their COMPUTER PROGRAMMING skills, and to be a well-rounded “roboteer”, stu-

dents w@ee competency in both sets of skills.

C)O

19

Chapter 5: Using MINI Mobile App

With the MINI Mobile App, a first-time user can access the ROBOTIS provided “Default” Motion
Group (e.g. the “default.mtnx” file) and put the MINI robot through its paces for “edutainment” purpos
It has many utility functions built-in: Actuator Test, Motion Offset, Motion File Setting, Server/Clie Q
tings, just to list a few popular ones. The robotics programming capabilities for this App are limite%

1. Assigning a “Button”, i.e. a touch area on the mobile device, to a user-assigned Mo %
Page/List via its Motion Index Number.

2. Assigning a particular “Gesture” with the mobile device to a given Motion Page/Lggia its Mo-
tion Index Number.

3. Assigning a Voice Command to the mobile device to activate a given MoWgn Jage/List via its
Motion Index Number.

4. Using a Virtual Remote Controller (U-D-L-R-1-2-3-4-5-6 buttorwyss two modes of con-

trol: “Soccer” (Defense or Offense) and “Fight” modes.

As of the writing of this chapter, the current MINI Mobile App is V.&$#86 for the Android version
(https://play. ,qoo,qle.com/store/am)s/details?id:corn.robotis.darwinmilﬂ'a .9.15 for the i0S version
(https://apps.apple.com/us/app/robotis-mini/id948481762), and till using the MTNX files, in-
stead of the MTN3 files as created by the new MOTION 3 co of the R+TASK V.3 application (see
Chapter 4). Fortunately, there was NO DIFFERENCE bgtwagiNy formats of an MTNX file and an MTN3
file, thus the author just changed the extension MTN3 fro @ ile “MINI_Custom.mtn3” (from Chapter 4)
to MTNX to obtain the file “MINI_Custom.mtnx” hi@q then be used by the current MINI App directly.
The interested reader can use Windows NOTEP ol and read inside these MTNX/MTN3 files to see
the details in ASCII text (they are XML ﬁ%v ality). Perhaps in a future update of the MINI App, it

can read MTN3 files directly.

The MINI App is well documented atNgeseWeb links: http://emanual.robotis.com/docs/en/software/mo-

bile app/mini_app/ and http://emanua .com/docs/en/edu/mini/, thus the author did not see the point
of rewriting these informational k into this Chapter 5. Thus, the goal of this Chapter is to help
the reader go through a practicg igfusing the MINI App to add a new button with the author’s pro-

vided file “MINI_Custom.r%x’;
5.1 Transferring “MINI& .mtnx” to Mobile Devices
For the purpose o t1 ¢ this Chapter, the author used either an Android tablet (Samsung Tab A) or an

iPad as the mobide @

If the rea sewatAndroid device and the file “MINI_Custom.mtnx” file is on a Windows PC, then
Windows [\rePcan be used to drag and drop this file from the PC into the appropriate “ROBOTIS

MINI” fQ:) he Android tablet (see Fig. 5.1).
5.2

Qns web link shows how to connect the MINI robot to the MINI App via Bluetooth
P//emanual.robotis.com/docs/en/edu/mini/#connecting-the-robot-with-the-app-using-bluetooth).

g to Bluetooth & Performing Actuator Test

Next, it would be a good idea to use the “Actuator Test” function to check out the overall assembly of
the servo motors to see if they were at the right locations on the robot’s frame and if they were controllable
from the reader’s mobile device (http://emanual.robotis.com/docs/en/edu/mini/#assembly-check-using-the-

20

app). A minor note to remember that the current MINI App can only test up to 16 XL-320s on the MINI ro-
bot, as the author’s robot had 17 servos, he had to test the 17" servo using the MANAGER tool (see Section
2.1.2).

5.3 Associating “MINI_Custom.mtnx” to MINI App

The MINI App by default uses the Motion File “default.mntx”, and as we want to use the
“MINI_Custom.mtnx” Motion File, we have to modify the “Motion File Settings” which can be found
the Setting icon located near the top right corner of the App’s screen when the MINI App is activate e
Fig. 5.3). & >

5.4 Assigning a New Button for Motion Page/List #45 “Crouching Bows” (}
obile d

In this section, we’ll practice how to assign a new “Button” (i.e. a Touch Area on the
the Motion Page/List named “Crouching Bows” in the “CT Custom Motion Group”.

ice) to

This web link (http://emanual.robotis.com/docs/en/edu/mini/#control-with-button\giyes good infor-
mation about how to Add/Edit/Delete/Arrange Buttons inside the MINI App — th&geadegg¥s recommended to
review these steps in this web link first before reading on.

Once connected to the real robot, the MINI App main screen looks lik shown in Fig. 5.5,
whereas the user can either choose to “Run” or to “Edit”, but please nd% t $he bottom 3 buttons of the
“Run” Screen, i.e. “Stop Motion”, “Init Pose” and “Stand Up”, are no&x e (for further information
please review this web link http://emanual.robotis.com/docs/en/ed operation). Furthermore, there
is a typo in the right-most label: it should have been “Get otion Unit #2) instead of “Stand
Up” which corresponds to Motion Unit #4. N\

Main Screens for MINI App

mmmmm

ssssss

diarca

Lt T

Horse Oance

sssss

|
|
|
1

@ Fig. 5.5 Main Screens for the MINI App.
t

es, Voice Recognition, Messenger and Remote Controller

5.4

vergll, the MINI App is a good tool to use for beginning robot users but it is too restrictive as a robot
progr. ing tool, thus in Chapters 6, 7 and 8, the reader will be shown in-depth and flexible ways to con-
trol the MINI robot using the ROBOTIS TASK and PLAY 700 tools along with the integration of selected
ROBOTIS sensors to the OpenCM9.04-C, as well as other third-party and open-source software such as
EDBOT and OPENCV.

21

Chapter 6: Using TASK

To reach the broadest range of readers, the author will assume that the reader is a completer beginner in
the areas of computer programming and robot control, thus Chapter 6 would start with broad robot control
concepts before getting into the finer details of programming the MINI robot with the TASK component of

the R+TASK V.3 tool. Q
The R+TASK V.3 tool offers most of the standard programming structures found in other languggd s
as C/C++. Below is a short description of the most useful features for a beginning programmer@e ails

on specific items will be provided at appropriate sections in this chapter): %
, C

1) ASSIGNMENTS — TASK provides three types of assignment statements: LOAD
POLYNOMIAL.

The syntax for LOAD is “A = B” with the usual meaning of “Operan is wma#fned the Value of
Operand B”.

The syntax for COMPUTE is “A = B Op C” where the RHS reerc Value obtained when
performing the “Op” operation between Operands B and C. The g®g” operations supported are the 5
basic arithmetic operators “+, -, * , /, and % (remainder op %’, and the 2 bit-level operators
such as “&” (AND) and “|” (OR). Only INTEGER arit YN pported. VARIABLE parameters
are supported but arrays are not. }%

POLYNOMIAL is “format-free”. It is the usual “e3 n” in standard computer languages but it

2) LABEL and JUMP statements are suppo

3) CONDITIONS — For Conditional slementS® TASK provides the usual logical operators: “&&” and
“||” respectively for logical AND andlogNal OR operations, and also “==", “|=" “<” “<=" “>7 «“>="
sadard IF, IF-ELSE-IF, ELSE structures are supported, but nested
ses are not supported (so the user will have to apply DeMorgan’s
statements as needed).

for equality and inequality tests.
conditional statements using n
theorems to expand complex @

4) LOOPS - for Repetitg' statements, TASK provides “WAIT WHILE”, “LOOP WHILE”, “LOOP

FOR”, “ENDLESS L »B)d “BREAK LOOP”. Standard computer languages also offer a DO-WHILE
° pported in TASK.

jtion and calling are provided in TASK. A special CALLBACK function can also
by a hardware timer every 7.81 ms independently of the main TASK program.

loop structure whyj

ThagN\# s recommended to first view Video 6.1 for a quick working tour of the TASK V.3 application
tl @ n¥bout the editing basics for TASK V.3 component by following the author’s steps in creating
he egample TASK program called “M_LEDControl_Servo6.tsk3”.

he following sub-sections, 6.1.1 through 6.1.5, were written for a “complete beginner” user in mind,
but they could be used as “review materials” for readers with more experiences in computer programming
from elsewhere.

22

6.1.1 LED Control with Timer

Video 6.1 just showed the mechanics of creating a TASK program such as “M_LEDCon-
trol_Servo6.tsk3” without much explanations for why certain statements are needed and why a certain order
of these statements was used. In this sub-section 6.1.1 each statement used will be explained in more details
(see Fig. 6.1).

6.1.2 Sequential Control of Servo Positions Q
The goal of “M_SequentialControl_Servo6.tsk3” is of course to learn the effect of SEQUENC
CONTROL on the motions performed by Servo-6 (see Fig. 6.2): (L

4 START PROGRAM

5 1o

y Boasalical .

7 @ ID[Alll: & Torque ON/OFF = FALSE Q
8 @ DAl § LED = FALSE

10 @ ID[6): @ Torque ON/OFF = TRUE V
" @ ID[6): &), OperatingMode = V

12 # ID[6]: @ Torque Limit =

1 # ID[6): E} Goal Velocity = 1 %

: m— O

15 @ IDl6): £33 Goal Position =

s WAITWHILE (@ IDI6]: i IsMoving == TRUE (1)) \
W Con ‘ :
] @ ID[6]:¢]) Goal Position =

1w WAITWHILE ([IDIG): & IsMoving == TRUE (1))

21 o IDIGL:.{’;} Goal Position = @
2 WAIT WHILE (e 4D|6|1F= IsMoving == TRUE (1))
z }

Fig. 6.2 TASK prog&“MGDCmtrolServo6,tsk3”.

6.1.3 Endless Loop Control of Servo PoS{i

ion
The “M_EndlessLoopControl Serv

tion Control commands within it (see ff1

Section 6.1.2.

ogram showcases the use of an Endless Loop with Posi-
It uses the previous Servo Control concepts described in

LOOP-FOR in TASK p nomenclature). This type of loop is used when the programmer knows ex-
actly how many tim oup of statements needs to be executed by the robot’s controller to accom-
plish a given task . and Statements 14 through 27).

6.1.5 Conge Loop Control of Servo Positions with Remote Controller
The ogram “M_ConditionalLoopControl_Servo6.tsk3” has two goals: the first one is to illus-
trat r Use of the LOOP-WHILE structure, and the second one is to introduce the usage of the Vir-
tuaRRemyte Controller RC-100 (see Fig. 6.8).

6.1.4 Counting Loop Co@' rvo Positions
The “M_CountingLo% Servo6.tsk3” program illustrates the use of a Counting Loop (labeled as

23

6.2 Structure of a complete TASK program

In this Section 6.2, the TASK program “M_RC Walker Basic_a.tsk3” is used just to illustrate the vari-
ous components of a typical TASK code. A detailed procedure will be provided in Section 6.3 to illustrate a
general approach to solve a typical robotics project resulting in such a TASK program.

Please note that the program “M_RC Walker Basic a.tsk3” uses the “RC_Walk 1” MOTION-GROU
from the “MINI_Custom.mtn3” file (see Fig. 6.10). The reader needs to make sure to download this
MOTION-GROUP before downloading and running the “M_RC_Walker Basic a.tsk3” code. (L

Download Motion %

RC Walk 1 ‘ ,
B initial Position SER V

RCWalk 1
Fig. 6.10 Accessing “RC_Walk_l% -GROUP.

Fig. 6.11 shows Part 1 of the program “M_RC_\@Qic_a.tsk3”.

Motion Group List

{

1
2
3
4
5 START PROGRAM
6
7
8

CALL

E\@Part 1 of “M_RC_Walker Basic_a.tsk3”.

6.2.1 Comment & C Statements

*
6.2.2 Start & E nds

6.2.3 Execu«tn ments

The mo mdn type of EXECUTE Statements is the LOAD type and it is used throughout this ex-
ample prerNn§ Lines 18, 22, 27,32, 37,45 to 50 in Figs. 6.12 and 6.13. EXECUTE Statements affect the
i igwef data flow/status from sensors/parameters and the subsequent robot’s actions. Without them,
the Royvould be a “no-fun” static object.

6.2.4 Loop Statements

Only two types of LOOP Statements are used in this example TASK code and they are of the type
ENDLESS-LOOP (Lines 10 in Fig. 6.12) and WAIT-WHILE (Line 16 in Fig. 6.12 and Line 51 in Fig.
6.13). Section 6.3 will show that the ENDLESS-LOOP is a direct consequence of the use of the “Sense-

24

Think-Act” paradigm. LOOP Statements allow the creation of compact code blocks that can be condition-
ally repeated instead of having to lay them out sequentially in the controller’s memory space and thus make
more efficient use of this limited resource.

6.2.5 Condition Statements

Only two types of CONDITION Statements are used in this example TASK code and they are of the
type IF (Lines 13 and 19 in Fig. 6.12) and ELSE-IF (Lines 24, 29 and 34 in Fig. 6.12. Section 6.3 will §
that the CONDITION Statements flow from the use of the EVENT-PROGRAMMING approach. Iy
CONDITION Statements allow the mapping of all possible event/action pairs that are currently

by the programmer for the robot to deal with. CONDITION Statements allow the robot to resp
changing environment, in the real world, that it must work within

6.2.6 Function Statements C)

The only FUNCTION Statements used are the FUNCTION (definition) used at LWg 43s0f Fig. 6.13)
and the (function) CALL at Line 8 of Fig. 6.11. FUNCTION Statements allow t mer to use a top-
down and modular approach to develop an efficient solution to a given robotics projWg€with defined goals
and tasks (see Section 6.3).

about robotics projects, as well as concrete sequential steps that u1t1 result in an efficient TASK program
that can perform the tasks/behaviors that are required of the bot for a given project.

6.3.1 “Sense-Think-Act” Paradigm O
Most if not all my beginning robotics students we%urlmsed when I started my robotics short courses by

mentioning that they had been doing “Roboticsgn their ®veryday activities and doing it very well too, all by
themselves. I used Fig. 6.14 to explain how QUMM use our Senses to let us know about the external World
(i.e. Perception) and apply those SensatiqggdniNour Cognitive process (i.e. Thinking) to devise proper Ac-
tions/Reactions to the situation at han ctions/Reactions in turn would change some aspects of the
external World resulting in new Sens@i gering the next World-Human-Interactions cycle and so forth.

-

World — Human Interactions Cycle

Q* ;_ PERCEPTION

6.3 Beginner’s Approach for Robotics Projects
In this section, the author strives to provide beginning “robo‘:@h a general approach to thinking

ACTION
@

C)O -z., . comom

Fig. 6.14 World-Human Interactions Cycle.

25

6.3.2 Reactive-Control Approach

Next, let’s spell out the goals for the current project “RC Walker Basic” that can lead to the example code
“M_RC Walker Basic_a.tsk3” which used MOTION-LISTs/PAGEs defined in the MOTION-GROUP
“RC_Walk 17 (see Fig. 6.10):

6.3.3 Event-Action Pairs

With the “Reactive Control” approach, the first step RC1 is to translate each project goal from§he %
list into a specific Condition/Event matched with an appropriate Action for the robot to do (see @ .

6.3.4 Basic Remote-Control Concepts (revisited) (}

Although some Remote-Control concepts were introduced in Section 6.1.4, let’s look More formally
at how the OpenCM9.04-C can receive data from the VRC (i.e. the PC) via the BT-2 K recpiver:

6.3.5 Sensor-Actuator Pairs V

The second step RC2 is to build upon the results of the previous step RClVirroring its Event-Action
pair into a matching Sensor-Actuator pair as shown in Fig. 6.20. The is to specify the kind of Sen-
sors/Actuators (in a general sense) to be used and to prescribe Eov@ e to be used.

6.3.6 Event-Programming Approach \\

Another benefit for using Event-Action and Sensor—Actua@airs is that they will help with the actual
coding (as shown later in Section 6.3.7), as the TASK s@v 1d support practically a one-to-one corre-
spondence of all Event-Action pairs A to Z (see Fig. 6@ similar “physical” locations within the final

program, except for two aspects that had not bee d
6.3.7 Application to Basic RC Walker
Recalling the previous discussions @ection 6.3.3, this project deals with mutually exclusive

Event-Action Pairs, and TASK has CONDITION structure that will function in this manner. It is called
the IF-ELSE-IF structure which c@ 1d out in pseudo code below:

sed:

If (Event 1 is TRUE) then\Llay)Robot Motion 1)
Else If (Event 2 is T i@then (Play Robot Motion 2)

Else If (Eve UE) then (Play Robot Motion 5)
-

In “Compuii hinking” practice, these steps would also correspond to the “Algorithm” (Re-
fining) phase:

iligent users would soon realize that backtracking various steps of this procedure for im-
TASK program will be the “norm” for any meaningful robotic project.

Q TASK Support Utilities
e TASK component of TASK 3 also provide several support utilities during the programming and
debugging phases of the user’s robotics projects:

1. Inits Programming Menu (F2) (see Fig. 6.24):
a. The usual editing functions are implemented — Cut, Copy, Paste, Redo & Undo.

26

b. The user can export a TSK3 program into several PNG files depending on the length of
the TSK3 program or into a single ASCII text file.

c. The user can also choose the appropriate COM port before downloading one’s TASK
code.

2. Inits Debugging Menu (F3) (see Fig. 6.25):

a. The user can start or stop the Program Output Monitor to see print outputs at runtime, §
the user’s program uses PRINT or PRINTLN commands.

b. Ifthe user’s program uses the Remote Controller RC-100 features, then the Virtygal®Re
mote Controller facility is accessible here. The user needs to remember that thd %
keys (U-D-L-R) and the “number” keys near the top of the keyboard can al g

instead on left-clicking with the mouse into the “buttons” shown in Fig. 6.25.

Utilities on TASK’s PROGRAMMING Menu

XKD m [& comzz v @ Q
\ ' | \/
v/
)

Redo l Paste Download
Undo Copy
Cut

Connect robot

Export Source Code to file Port Number

Please specify format to ex

Export to PNG format, v

Export to TXT format.

Use USB Dongle

»
Fig. 6.24 Utilities fouv&ASK’s Programming Menu (F2).
6.4 RC Walker with Independent Serv ONLI'0

Expanding on the previous projecyf Bastf\RC Walker”, let’s add a new capability to our MINI. Instead
of using only 1 RC button at any timeNQ coptrol the robot at runtime, let’s now use multiple buttons simulta-

neously on the RC-100 (Physical EVi) to accomplish these tasks:

1. We want to use “ - buttons to serve as a Walk Direction (only one direction is allowed
at any time).

2. The buttons M Nad 3™ are to be used when we want to raise (“1”’) OR lower (“3”) the right
arm of ﬁn\ via direct control of Servo ID=1 (i.e. right shoulder joint) while the robot

direction or standing still.

oMs “2”” and “4” are to be used when we want to make the MINI’s head scan left (“2”)

right (“4”) via direct control of Servo ID=17 while the robot is walking in any di-

n or standing still.

1S capability will require us to resolve two issues:

How to separate the information from the different RC buttons from the single message (e.g.
“Dataln’) that our program would receive from the VRC when the user pushes on several RC
buttons at the same time (see Section 6.4.1).

27

2. From Chapter 4, we know that when a MOTION-LIST/PAGE is being played all 17 servos are
controlled by this MOTION-LIST/PAGE, thus how can a TASK program be written to control
only specific servos among those 17 servos? (see Section 6.4.2).

6.4.1 Filtering a RemoCon Message

So far (Sections 6.1.5 and 6.3), the reader has been shown the basic usage of messages sent by the
let’s now look closer at the structure of these “RemoCon” messages.

A full “RemoCon” packet is based on a 16-bit user-designed message wrapped up in a 6-b %
(http://emanual.robotis.com/docs/en/parts/communication/rc-100/ #communication—packet) Kection

6.4, we’ll restrict ourselves to using only the lower 10 bits of this 16-bit message (in Sectior? 6.}, ghe reader
will be shown how to use all 16 bits).
6.4.2 Servo Joint Offset Special Value “1024” Q
The last time that we used Servo Joint Offset parameters was in Section 4.4 reMg the OFFSET-
POSE being used to adjust for variations in the geometric framing configuratioofg® typical “physical”
NI robot. These values were
re details at this web link

0¥#oint-offset). This link also
o(s) from the effect of a robot mo-

MINI robot, as compared to the ideal one represented by the “graphical”
small, actually they are restricted to the range from -255 to 255 (pleas
http://emanual.robotis.com/docs/en/software/rplus1/task/programnt
mentions that a special value of “1024” can be used to spare spec&
tion being performed.

6.4.3 Construction of “M_RC Walker 1S.tsk3”

As this is another RC application, the general @developed for “M_RC Walker Basic b.tsk3”
should still be applicable. In the “Basic” applic y the “Walk Direction” was needed: i.e. we need
only to know which U-D-L-R Button is pushgd andNen play the appropriate MOTION-LIST/PAGE to
make the MINI walk in the commanded difcNon.

This “Independent Servo Control’g t also illustrates different ways to use IF, ELSE and ELSE-IF
structures to check for events that gewcNgcal to the robot’s behaviors at runtime and the main challenge was
how to manage those structures \n@.e ain Endless Loop. The “management” approach that the author
used was to change the focus from s” to “forest” and vice-versa to make sure that the “Sense-Think-
Act” Paradigm is adhered to levels of abstraction, along with the use of Flag/State Parameters to allow
the programmer to keep tr& e different “robot-states” that may be involved.

6.5 RC Smart

o
In this pro %_RC_Smart_Avoider.tsld”, Remote Control techniques are combined with Autono-
2 ased on Sensor Input via two NIR distance sensors (IRSS-10) mounted on either side of the
e (see Fig. 1.4).

s Project requires fast responses from the IRSS-10 sensors as well as from MOTION-
IS GEs being performed, there are two new concepts that readers need to master: programmed stop-
of a current MOTION-LIST/PAGE being performed and appropriate use of the CALLBACK Function.

6.5.1 “Programmed Stoppage” of Motion-List/Page

In the MOTION-GROUP “RC_Walk 1 used so far (see Fig. 6.10), each of its MOTION-LIST/PAGE
performs 3 repetitions of the chosen robot movement such as Advance, Reverse, Turn Left or Turn Right for

28

each time that it is invoked. For this “Smart Avoider” project where a quick response to an obstacle just de-
tected is of paramount importance, we will need to use a different MOTION-GROUP where robot move-
ments are shorter in time duration and performed only once when invoked. Thus the “Smart Avoider”
MOTION-GROUP was created (see Fig. 6.40).

6.5.2 CALLBACK Function Q

The TASK Sub-Tool offers a special Function named CALLBACK which is executed indepen
the Main Program and its User-Defined Functions. It executes itself every 8 ms (7.81 ms, to be grgct)
which corresponds to the smallest time period allowed between KEY-FRAMES defined in a
UNIT (see Section 4.1.2). Because of the short execution time of 8 ms, the CALLBACK F{ncjiol™as some
restrictions on its size and the types of commands that can be used in it:

e [ts size cannot be more than 512 bytes. < ’

e LOOP, LABEL, JUMP and CALL types of commands are not allowggd.

¢ A maximum of 2 External Device Calls (e.g. access to Sensors, RC-1 tons or Dynamixels)
are recommended. More programming tips for accessing Dynarwe presented in Section

6.8.4. 9
6.5.3 Construction of “M_RC SmartAvoider.tsk3” TS

For this project, the “Sense-Think-Act” still works well for u&\;ever the Event-Action pairs become
more complex in structure and intertwined as the robot’s tasks ore sophisticated. The author’s ap-
proach had been to create the Essential Algorithm first (orest” view) and to deal with the Link-

ages as they arose (i.e. the “tree” view). O

6.5.4 Alternate Solution for Smart Avoider Q‘
There is an alternate algorithm/solution g the M§in Endless Loop for the “Smart Avoider” project as
shown below:

6.6.2 New “Walk Execute” Appr

The “Essential Algorithm” fo@{ dom Walker” project is a modification of the Main Endless
Loop used in “M_RC SmartAvoi(es#ft.tsk3” and it is shown below:

6.7 The “Mimicking \'

Back in Sect§o ¥he reader had been shown how to filter a “Remocon” Message to obtain only
specific inform \ specific bits comprising the RC-100 message which has only 10 bits, each bit
corresponding % of the 10 Buttons U-D-L-R-1-2-3-4-5-6. However, a full “Remocon” message has 16
bits (http://c™aQual.robotis.com/docs/en/parts/communication/rc-100/#communication-packet), thus this
“Mimicleg [1PIs” project will show the reader how to use the other 6 bits via a “Message Shaping” pro-

ceduQ

@r is project, the reader does need to have access to two MINIs, one will be set up as the Leader
e other as the Follower. The servos of the upper body of the Leader (i.e. Servo IDs from 1 to 6 and

17) will be disabled so that they can manipulated by hand. The goal of this project is to design TASK

codes to run on the Leader and Follower robots such that when the Leader’s disabled servos are ma-

nipulated one-by-one or as a unit, the corresponding servos on the Follower will match exactly their

movements.

29

6.7.1 Master & Slave BT-210

First, the BT-210s on the Leader and Follower robots need to be modified so that they communicate
only to each other (and not to the PC or Mobile Device as we had been using them). In wireless communi-
cations speak, the Leader’s BT-210 needs to be set up as a Master and the Follower’s BT-210 needs to be set
up as a Slave. The ROBOTIS e-manual does carry how-to instructions for this procedure, along with a
video, at this web link http://emanual.robotis.com/docs/en/parts/communication/bt-2 10/#communicati
mode.

6.7.2 “Message Shaping” Concept

For this project, the Leader robot needs to send to the Follower robot information about%n chosen
XL-320 regarding its ID number (valued at 1 through 6 or at 17) and its correspondin esen®Position
(i.e. a number between 0 and 1023). When the Follower receives these items, it can x@n to match its
own servo ID and to set its Goal Position with the Leader’s Present Position. V

6.7.3 “Open-Loop” Solution for “Mimicking MINIs” y
In the “Open Loop” solution, the Leader robot just pumps its informajsen over to the Follower robot
which will strive to match the Leader’s motions, whether the Follower the required motions or not.
23

6.7.4 “Closed-Loop” Solution for “Mimicking MINIs”

In the “Closed Loop” solution, the Leader robot still pump|
will strive to match the Leader’s motions, however if song * wer’s servo experiences a Torque Overload
situation (because it cannot go where it is supposed to ggmgM@Xample it gets stuck by some obstacle), then
the Follower would send information (to the Lead N e overloaded servo’s ID and its Servo Position
where the overload is occurring. This means tha@con” messages need to go both ways between the

Leader & Follower robots. Thus, both LeK@d llower codes for the “Closed Loop” solution will now

rmation to the Follower robot which

have a “Sending” section and a “Receivin ction.

6.8 Using MINI’s Arms as Gripﬂ
Back in Section 4.4, we encou the concept of JOINT-OFFSET for a typical Dynamixel XL-320 in

the MOTION Sub-Tool and j text of the Calibration Pose for the MINI robot, there we used it as posi-
tive or negative angular réigtiqudvalues (i.e. in degrees). Then in Section 6.4.2, we used it in the TASK
Sub-Tool with the spW of “1024” to isolate targeted Dynamixels from the effect of a MOTION-
LIST/PAGE being jin order to use GOAL-POSITION commands directly on these Dynamixels
(please remembd @al” GOAL-POSITION values are from 0 to 1023 — see Fig. 1.3). In this section,

i %5‘1‘ wd way to use JOINT-OFFSET within the numerical range from -255 to 255, and in

i ION-LIST/PAGE being played. For more information regarding JOINT-OFFSET,

eb link http://emanual.robotis.com/docs/en/software/rplustask3/task parameters/#joint-

8.1 “MOTION from STILLNESS” using Variable Joint-Offset

In this mini-project “M_Head JointOffset.tsk3”, we are using the “Arms Gripper” MOTION-GROUP
and the MINI is programmed to play “continuously” the MOTION-LIST/PAGE named “Initial Position”,
i.e. the Ready Pose. In this “Initial Position” MOTION-UNIT, there is only | KEY-FRAME where the

30

Head Servo (#17) is set to go GOAL POSITION “512” (i.e. head facing forward), thus playing “Initial Posi-
tion” continuously means to keep the robot in STILLNESS. However, by varying the JOINT-OFFSET of
Servo #17 appropriately, we can get the Head Servo into MOTION, that is “MOTION from STILLNESS”!

6.8.2 Application to Adaptive Grasping

We are now ready to apply the above “Joint Offset” technique to the two arms of the MINI to make
them function as a gripper that can adapt to different sizes of the object being grasped.
The author implemented two versions of the TASK codes for this “Arms Gripper” project: one %h

Standard Function protocol (“M_ArmsGripper_ F.tsk3”) while the other uses the CALLBACK E
tocol (“M_ArmsGripper CB.tsk3”).

6.8.3 Standard Function (SF) Solution ‘ ’
Fig. 6.70 shows Part 1 of the Main Program for “M_ ArmsGripper F.tsk3” usin Initializations

in Function “Init”. EV

Part 1 of Main for ARM-GRIPPER ’

(F version)
START PROGRAM

{

s @ o~ e

CALL 111t [FUNCTION
CALL P

@ ID[Alll: @, Torque ON/JOFF = TRUE (1

® D[All: & TorquelLimit = 1
a9 @ ID[All]: EY Goal Velocity = 10

[Joint LED Auto ON (Motion Playback) =
51 (® Motion Index Number = g Motion[1]:g. Initial Position
2 WAITWHILE ((@ Motion Status == TRUE)

s}

Fig. 6.70 Part 1 of the Mairf{Pro \1 for “M_ ArmsGripper F.tsk3” and Function “Init”.

I
5 ntOffse

45 @ ID[Alll: @ Operating Mode =
7

3

6.8.4 CALLBACK (CB) Fun%z Solution

In two previous projects,
tion 6.6), we used the CA

art Avoider” (Section 6.5) and “Autonomous Random Walker” (Sec-
Function to read two IRSS-10 Sensors which were directly connected
to I/O ports 1 and 4 f t CM9.04 Hardware Controller STM32F103CB (see Fig. 6.41). As it took
only about 0.02 ms t ach sensor reading, as compared to the 8 ms cycle of the CALLBACK Func-
tion, we did not h o ofify the way we programmed the Main Program and the Standard Functions that
were accessin Sensors.

Howeve tis “Arms Gripper” project, we will need to access 4 XL-320s that are connected to
thelr ixel network which can be considered as external to the STM32F103CB Controller. Fur-
the e precedmg TASK code “M_ArmsGripper F.tsk3” indicated, the Main Program and Stand-
ard ons would be now accessing the same Dynamixels that the CALLBACK Function would also ac-

cess, possibly at the same time. Thus, the “real-time” communications time delays between various
controllers and the potential network packets collision issues would need to be dealt with, in this
CALLBACK solution.

31

6.9 Autonomous Dowel Scanner using DMS-80

This last project of Chapter 6 uses the Smart Avoider Motion Group and uses the DMS-80 sensor
(connected to I/O Port 2) to search for 2 white wood dowels placed at random in front of it, and next
to command the MINI to autonomously approach the “closer” dowel first, and then to relocate the re-
maining dowel before approaching it as the final step.

B

Fig. 6.84 illustrates the physical layout for the “Dowel Scanner” program “M_DowelScanner.tsk3’ Q
well as its constraints: %

1. At the Start Position, the DMS-80 should be “looking” at empty space, as the propo
program uses this condition to establish the “background” level as provided by the -8U sen-

sor readings.

2. At the Left Limit and Right Limit Positions, the DMS-80 should also be “loo@t empty
space as a necessary assumption for the Dowel Scan algorithm to work.

3. The two white dowels can be located anywhere between the Left Limit a ight Limit Posi-
tions (but not in line with the Start Position). Essentially, “Dowel 1”%gould¥%e on the robot’s
Left and “Dowel 2” should be on the robot’s Right. P

Physical Layout for DOWEL-SCANNER

DMS-80 DMS-80
Start Position Left Limit Position Right Limit Position

Fig. 6.84 Physical Lay(m@raints for Program “M_DowelScanner.tsk3”.
{

6.9.1 Scan Background & Set D reshold

6.9.2 Scan & Locate Bot @
6.9.3 Relocate & AppNaicNCloser Dowel
6.9.4 Relocate & h Remaining Dowel

32

Chapter 7: Using PLAY700 Mobile App

The Mobile App “R+m.PLAY700” was originally created to accompany the PLAY 700 kit
(http://www.robotis.us/software/play700/), but it also works with the OpenCM9.04-C using SMART
DEVICE commands in conjunction with SMART CONSTANT parameters inside the TASK tool (see Fig.
7.1). Detailed information about these SMART functions and their corresponding arguments are contalne
in the file “SmartDeviceControlTable.PDF” accessible at www.cntrobotics.com/mini-book. This PDF
a Chrome-translated English version of this Korean web page http://support.robotis.com/ko/softwar %w

bile app/r+smart/smanrt_manual.htm#Actuator Address 0B3

Set Device or Number. %
- . ==

MoEE R N |
a

Fig. 7.1 SMART DEVICE & NST\T Options inside TASK Sub-Tool.

The R+m.PLAY700 App allows users to m ¢ functionalities to standard TASK programs (see
Chapter 6) by leveraging existing mob such as graphics, multimedia, video camera or speech
recognition. < ’

The goal of this Chapter is to pre readers with a firm foundation in using the R+m.PLAY700
App with R+TASK V.3 via sev argeted projects.

7.1 Installation of R+m.

test version of R+m.PLAY700 on iOS or Android devices at the appropriate
com/store/apps/details?id=com.robotis.play700&hl=en or https://itunes.ap-
60377217mt=8).

The reader can inst.
web links (https://ple)
ple.com/us/app/pl

ure for PLAY700 App

For ent work, the author uses a Windows 10 PC which interfaces well with Android devices,
an 1 folder management can be done via Windows Explorer. Fig. 7.2 shows the folder/file struc-
tur AY700 on an Android device.

7.1.2 Settings for PLAY700 App

Fig 7.4 shows a screenshot of the main menu window for the PLAY700 App where the reader can see a
“gear’ icon on the top right corner. Once this “gear” icon is tapped once, the “Settings” screen is shown as
in Fig. 7.5.

33

Example Robots 1~

Create a New Project

Fig. 7.4 Main Menu of PLAY700 app, opening on Custom Project “Hel@ld”.

7.2 PLAY700 Project Features VV

Going back to Fig. 7.4, when the user taps on the “Edit” button of a ;@t, a screen as shown in Fig.
7.6 displays all the components/tools that can be used for this proje‘ct. rrent Android version (0.9.5.1)
has all these tools operational, but for the current iOS version (& e following six tools are not yet

functional:
“Instrument” in the Multimedia group. O
“Illumination” in the “Sensor” group. Q
“Received SMS”, “Status Bar”, “Vibration”, > in the “Other” group.

7.3 “Hello World” Project

There is an extensive list of “SMAR'
should provide readers with a basic usage
http://emanual.robotis.com/docs/e
mation about the Smart Devices

@CE” commands as shown in Fig. 7.1 and this Section 7.3
the®ool chain TASK/R+m.PLAY700. This web link

lustask3/task parameters/#smart-device has more infor-
ppoigc®in TASK V.3.

This project will show how to ay the text object “Hello World!” on the Mobile Device’s Display
Screen in different sizes aqd s, and at randomized screen locations.

As far as TASK i d, the Mobile Device’s Display Screen is divided into 25 zones arranged in a
5x5 grid in either Po %andscape mode (see Fig. 7.7).
’ BHEER

... : .

Fig. 7.7 Organization of the Display Screen on Mobile Device vis-a-vis TASK Tool.

34

7.4 “Touch RC Walker” Project

This “Touch RC Walker” project’s goal is to adapt the robot functionalities described in the “RC Walker
with Independent Servos Control” project (i.e. “M_RC Walker IS.tsk3” in Section 6.4) using selected
Smart Device features such as “Touch Area”, “Text Display” and “Instrument Play” as well as a new opera-
tional feature which is the capability to change the Goal Velocity of all the servos of the MINI. This projec
uses the “RC Walk 1 MOTION GROUP from the file “MINI_Custom.mtn3”. Q

7.4.1 “Touch Areas” in R+m.PLAY700 App (L

So far we have only used the RC-100 with its 10 buttons as a Remote Device for controllin ,
and each Remocon message contains ON/OFF information regarding these 10 buttons “individ%o we
have developed programming techniques to deal with that operational feature (see Sectiong#™). H®vever,
the R+m.PLAY700 App handles the Mobile Device’s Display Screen quite differently as'@es this

Screen into 25 Touch Areas arranged in a 5x5 grid in either Portrait or Landscape mege t picture in
Fig. 7.12). Furthermore, this App can only report to a TASK program about 2 T uch at any time dur-
ing the runtime of a TASK/PLAY700 project. In other words, the prograrnmer/o can use only up to
two fingers at a time when using the Mobile Display as a Remote Controller (gg com red to all 10 buttons
on the RC-100). But the programmer will be able to distinguish which “ﬁ uches the screen first as
“Touch Area 17, and the later finger-press as “Touch Area 2”. Inside th ub-Tool, these “Touch
Areas” are accessible via the “Smart Device” panel and in the ‘Senso ory (see right and bottom pic-

tures in Fig. 7.12). The Parameters “Touch1” and “Touch2” Woul
from “1” to “25” depending on which Touch Area(s) on the
contain “0” if all fingers are off the Mobile Display. Conseq a different interface programming tech-
nique needs to be developed to handle Touch Areas (segSe @ 3.4).

Communications wise, the “SMART: Touch Ar “SMART: Touch Area 2” commands are
READ instructions that are sent from the MINI ®ntrolNy to the Mobile Device through the 57 Kbps Blue-
tooth interface. Once the Mobile Device receieNghese instructions, it uses its own services to determine the
current status of its Touch Areas and reports g int®rmation back to the MINI Controller via Bluetooth.
Thus, this is a lengthy process as com@ eading of Buttons on the RC-100.

“Touch Areas™ on Mobile Device Accessible
as “Touch Areas 1 & 2" in TASK

a numerical value in the range
lay get pressed, and they would

Set Device or Number.

Controller Device

m Controller Constant

() Smart Device -
WoIsEuey
Smart Canstant Miscellaneous.

. L) % TouchAreal

3 Commen W Custom

_ Gesture Recognition

Touchl = [J SMART: i TouchArea 1
Touch2 = [J SMART: & TouchArea2
v

~“*+Zone Number [1-25]

Fig. 7.12 Accessing & Programming Touch Areas on Mobile Display.

35

7.4.2 “Text” Items in R+m.PLAY700 App

For this Touch RC project, the first 10 “Text” Items as shown in the left picture in Fig. 7.13 are used.
These “Text” Items need to be registered separately in an appropriate PLAY 700 Project before using them
in the TASK program (see Part 1 in Video 7.2).

Fig. 7.13 also show how to use the “SMART: Text Display” command to display a specific “Text”
on the Mobile Display at runtime whereas the programmer needs to specify:
Its display “Position” within the 5x5 grid of “Touch Areas” described earlier. (L
Its numerical “Index” as registered on the PLAY700 App “Text” utility.
Its display font “Size” [0-255].

Its display “Color” from 10 choices: Unknown, White, Black, Red, Gree lue, low, Light
Gray, Gray and Dark Gray.

These options are combined into a 32-bit integer value using the protocol deWm Section 7.3 and
then assigned to the “SMART: Text Display” utility which runs on the Mobi@ (see Fig. 7.14).

7.4.4 “Instruments Play” in R+m.PLAY700 App

The PLAY700 App also plays musical scales on 128 Musical [ps
ano” [1] to “Gunshot” [128]. For each instrument, there are 10
Scales or Notes [1-12]: e.g. Note 1 is “Do”, while Note 3 is “Ramgd o forth until Note 12 which is “Shi”.
A 3-byte SMART CONSTANT is associated with the Musical @v uments service where the lowest byte
(Byte 1) contains the Note’s value, while the next higher Iy @ Byte 2) contains the Octave’s value and Byte
3 contains the Instrument’s value. The 4" byte of a typ' FTART CONSTANT is not used for the Musi-

cal Instruments service and needs to be set to zer 15).
7.4.5 Construction of “M_TouchRC_Wglker X _SD.tsk3”
This program “M_TouchRC WalkerIS

“M_RC Walker IS.tsk3” which is d
to the use of SMART DEVICE fu

Fig. 7.16 describes the initializgtioglsteps done for servos in “M_TouchRC Walker IS SD.tsk3” which
are similar to the ones used n% .34 for “M_RC_ Walker IS.tsk3”, except for the setting of the Servo

(from “Acoustic Grand Pi-
ings [1-10] and 12 Musical

WD.tsk3” uses the overall algorithm of the previous project
in details in Section 6.4.3. Thus, only relevant differences due
will be emphasized in this section.

“Goal Velocity” Paramet

e InFig. 6.&03& Velocity” for All servos was set to a fixed constant value of “1023”

(Line 1
e In F’ 'Yhe “Goal Velocity” for All servos was set to a Variable named “Speed” (Line 150)
sThi

@\ tialized to “800” in the previous Line 149.

36

Initializations for Servos in
“M _TouchRC _Walker_ IS_SD.tsk3"™

1? CALL ~
~

N
144 FUNCTYQ)
o { \A

126 @ ID[Alll: & OperatingMode = 2

147 @ IDIAlll: & Torque ON/OFF = E Q
148 @ ID[AN]: @ Torquelimit = 10z

149 speed = 80(%

150 @ IDIAll]: E] Goal Velocity = Speed

151 HeadControl = FALS)

152 houlderControl = FALSE (0 %

155 () JointLED Auto ON (Motion Playback) = FALSE (¢ Q

154 ® Motion Index Number = g Motion[1]:g} Initial Position
155 WAITWHILE ((@ Motion Status == TRUE (1))

Fig. 7.16 Initializations for Servos in “MTouchRCWalkerIS%V
+m.

Fig. 7.17 describes initialization steps done for the SMART DEVICE (i.e. E AY700 App on the

Mobile Device):

e Line 158 sets the Mobile Display in Portrait Mode (i.e. a%ﬂ\'\’rite command).

e Line 159 clears the “Text” Display Screen by sending a_ Ug¢o%¢he PLAY700 App (another
SMART Write command).

e Line 161 makes the MINI Hardware Controller a “SMART Noise” Parameter com-

ing from the Mobile Device and with a dB val than 50 (usually the author whistles
loudly into the Mobile Device to achievci%l . Line 161 is critical to a smooth run-

time coordination between the TASK running on the MINI and the correspond
ing PLAY700 App running on thegobilqDevice. The reader may remember from Section
1.3.4 that as soon as power is ap l&ﬂhe MINI, its embedded TASK program will immedi-
ately run. On the other hand, the arYoperator will always take some time to start the appro-
priate Custom Project on t 0 App and the Mobile Device will always take several
seconds to connect the ice Bluetooth port to the BT-210 running the MINI. Essen-
tially Line 161 allows the 700 App to catch up with the much faster TASK program.

Without Line 161, allge SMART Text Display commands (Lines 164-176) would be sent over
to the Mobile De@n it is not ready to receive them, and therefore would be “lost”, i.e. the
Mobile Devi 1splay the “Menu” as shown in Fig. 7.14. In practice, it is best to make
sure that th ropriate PLAY700 Project is activated before turning on the MINI to
start the rogram. A side note for the interested reader: on newer ROBOTIS control-
lers sud a IM-550, there is a “Check Smart-Device Connection” TASK command that

cand to check for the actual BT connection between the Mobile Device and the MINI.
"y and can be used before issuing such Lines as 158-159 for best synchronization be-
these two devices.

37

Fig. 7.17 Initializations for SMART DEVICE in “M_TouchRC Wal IS

e Lines 164-176 produce the “Menu” as shown in Fig. 7.14.44 (har

Initializations for Smart Device

[0 SMART:) ScreenRotation = Po
[SMART![@ TextDisplay = 0

WAITWHILE (() SMART:gpNoise (dB) <
[SMART: @ TextDisplay = [Position

[SMART:[g TextDisplay = [Positio
166 0 SMART: [Text Display =

0 SMART: [Text Display =
O SMART: i@ Text Display = [Position:(5,

[SMART: @ TextDisplay = [P«
0 SMART:[i TextDisplay = [Positio

[0 SMART:[TextDisplay = [Pc
[SMART.[@ TextDisplay = 17

%
W}

)

0 SMART:[@| TextDisplay = [Position:(3,2)].[ites

in “M_TouchR{_Walker_IS_SD-tsk3"™

Q
q,Qq/
O

.tsk3”.

eader may have noticed
W ast”’, “Raise A", “Lower

that certain Text Items were NOT “colored” correctly:
A7, “Scan L” and “Scan R”. This was just because th
100% compatible with the PLAY700 App at the time

7.5 “Mixed Control Walker” Project

For this “Mixed Control” project, the primary go
tions of the robot and the Servos Goal Velocity settin
Secondary goals are to show the usage of the “
based Emergency Stop. This project also u

“MINI_Custom.mtn3”.

7.5.1 “Speech Recognition” and @
The “Speech Recognition” Functio he PLAY 700 App relies on the web-based Google Speech En-

ing of this book!

t-to-

Speech” in R+m.PLAY700 App

gine and it is a lengthy proces@ it is designed as a “FIRST FINGER” function.

's Samsung Tab A 8" was not

OQe two ways of controlling the Moving Direc-
‘Touch Areas” and “Speech Recognition”.

eech” utility and the implementation of a Touch-

“RC Walk 1” MOTION GROUP from the author’s file

‘Text-to-Speech” functions rely on the same list of “Text” Items used

Both “Speech Recogngti
for the “Display” functiowﬁe' gs. 7.24 and 7.25).

38

“*Speech/Voice Recognition™ in
R+m-PLAY?700 App

To change:

Index
Text item

To delete/train:
Text ltem

To check Speech Recognition
of Text Items K
v

To add new Text Item

Fig. 7.24 “Speech/Voice Recognition” Utility in R+m.PLAYM>.

7.5.2 Construction of “M_MixedRC Walker IS SD.tsk3” 6

Fig. 7.26 shows the Function “Init” for the project “M_MixedR # IS SD.tsk3” which has 3
new statements:

e Line 196 initializes Parameter “InvalidComman E. This parameter is used to report
on the success/failure of the Speech Recognitio

e Line 197 initializes Parameter “VoiceCo ¢ ext” Item 11 which is “Stop” (see Fig.
7.04), &

Function *Init™ in
“M_MixedR(C_Walker_IS_SD.tsk3"

178 FUNCTION
m
180 B IDIANT: @, OperatingMode = :
161 @ IDIAll]: @ Torque ON/OFF = TRUE (1)
182 B IDIAI: @ TorqueLimit = 1023
Spe BOO

184
185
186 Shoul f t = FALSE (0)
187 Q) JointLED Auto ON (Motion Playback) = FALSE (0
Y % (@ Motion Index Number = g Motion[1]: g Initial Position
189 WAITWHILE ((@ Motion Status == TRUE (1))
Q |
191 te device ready using SMART commands
K\ - 192 [0 SMART: ¢ ScreenRotation = Porirait Mode (1)
193 0 SMART:(@ TextDisplay = |
194 Jser needs to make sure that robot nectad i moblled
* 195 WAITWHILE { [] SMART:Z2yNoise (dB) <)
196 InvalidCommand = FALSE (0)
197 VoiceCommand = Textitem 11
198 CALL

O
Q Fig. 7.26 Function “Init” in “M_MixedRC Walker IS SD.tsk3”.

o Line 198 calls the Function “Menu” which is listed in Fig. 7.27, showing the Display of two
new “Text” Items “Stop” and “Talk” (Line 268 and 269 respectively).

39

Function “Menu™ in
“M_MixedRC_Walker_IS_SD.tsk3a™

= O

q,Qq’
O

v

m }
Fig. 7.27 Function “Menu” in “M_MixedRC Walker IS Dtsy

Fig. 7.28 shows that “Text-to-Speech” is used to “accompany” the ’M LAY of each Moving
Direction performed by the robot when called upon.

The “Speech Recognition” utility (i.e. “Text” Item “Talk”) is 1
tion, thus it is added as a new “ELSE-IF” block to the existing
Moving Directions of the robot (as previously shown in Fig. é

251 FUNCTION

EC

254 [SMART:[E@ Text Display
5 [0 SMART: @ Text Display
26 [] SMART: [TextDisplay
[0 SMART: @ Text Display

2% [SMART: [Text Display
260 [0 SMART: (@l Text Display

262 [0 SMART: (@ Text Display
29 [] SMART: [l TextDisplay

265 [] SMART:{ Text Display
266 (0 SMART: [l Text Display

I O SMART [Text Dispiay
269 s} SMART‘TexlDiSp!ay

ted as a “FIRST TOUCH” func-
-IF” structure used for handling the

Fig. 7.29 shows the implementation details of S
dRC Walker IS SD.tsk3":

e Line 64 shows the usage of a WA HILELOQOP based on “SMART: Touch Area 17, mean-
ing that a “Press and Release” scgmegas been implemented for “Talk” (same approach as used
earlier for “Slow” and “Fast” 4 jon 7.3.5).

e The “Speech Recognition@ is a multi-step procedure illustrated by Lines 66, 67 and 69:

gnition” in the project “M_Mixe-

o Line 66 starts the{{Spegch Recognition” process (i.e. send a “1” to PLAY700 App). At
this point in time, tM®™ser would see the “Speak to Me” prompt appear on the Mobile
Device. then would need to voice out (as soon as possible and in the same
tone of v, speed as when doing speech-training) the wanted verbal command

owing “Text” Items: Forward, Backward, Left, Right, Slow and Fast.

ss a has a built-in time-out period of about 5 seconds.

40

“Speech Recognition™ usage in
“M_MixedRC_Walker_IS_SD.tsk3™

ELSEIF (To == [Position' (3511) (Executed by First Touch only)
{

| WATTWHILE ([SMART: & Touchhrea 1 ==)|

[SMART: & Speech Recognition = Start

WAITWHILE ([SMART: & Speech Recognition |=)

v ind =[] SMART: i Result of Speech Recognition Q
IF (Ve = -1)&
{
CALL
7 [SMART: s Result of Speech Recognition =
7 }
s IF (InvalidCommand == TRUE (1))|
7 {
7 validCommand £
] eCx the
7

3 32 2988282

}

w)
}
Fig. 7.29 “Speech Recognition” implementation in “M_MixedRC_Wa M.tski%”.

o The “Speech Recognition” tool would then pick up this vgmbal input and try to match it
up with its web database for the actual text as previou % in the PLAY700 “Text”
Item list. This process is quite lengthy thus Line s@l to wait for its termination.
The “SMART: Speech Recognition” command is D instruction sent from the
MINI to the Mobile Device. When the “Spee gnition” process is concluded on
the Mobile Device, a value of “0” is retu Mobile Device to the MINI Con-
troller.

o Itisthen OK to save the “SMART @f Speech Recognition” value (returned from
PLAY700 App) into Parameter * mmand” (Line 69).

e [f Parameter “VoiceCommand” is vghd, i.34yot equal to -1, Function “ProcessCommand” is
called (see details in Figs. 7.30 an&and the Parameter “Result of Speech Recognition™ is
cleared to 0 (Line 73) upon returtNgom¥ unction “ProcessCommand”.

e Lines 75 to 79 handle the si en an “InvalidCommand” is concluded while running
Function “ProcessCommgghd”. en this happens, Parameter “InvalidCommand” is reset to
FALSE and “VoiceCom s reset to “Text” Item 11 (i.e. “Stop”). At this point, the MINI
Controller exits the b%—E SE-IF structure handling the “Moving Directions” within the Main

Endless Loop.
In this project, an “Er@ Stop” is programmed as a FIRST or SECOND TOUCH option for the
operator (see Line 83’i 32):

e Lines the steps executed next:
O gﬁ\e 85 issues a MOTION (-1) command to immediately stop the robot current
OTION-LIST/PAGE from being played and have the robot perform the correspond-
Q g EXIT MOTION UNIT.
O Lines 86-90 use a LOOP WHILE to keep on playing “Shi” note on the “Instrument” FX
8, as long as the operator keeps pressing on the Display Screen with ONE or TWO fin-
gers. The music will stop when all fingers are off the Mobile Screen.

41

“Emergency Stop" implementation
in “*MixedR(C_Walker_IS_SD.tsk3"

Emergency St (Executed by First OR Second Touch)
0 I\F(\.-w-‘“ osition:(22)] || TouchZ == [Position'(2,)J
{

8 ® Motion Index Number = -1 <——
8 |LQOPWH\LE ([) SMART: § TouchAreal = FALSE(0) || [J SMART: & TouchArea2 = FALS)[

. ! Q
® |) SMART: (I Playlnstrument = [InstrumentFX 8 (sci-f)[Octave:3], IMusical Scalesshi(12)]

] & | WATWHILE ([SMART:(I] PlayInstrument > 0) Q

% .: }

9l ._-:}
Loot) exits when [(Touch Area 1 == FALSE).AND.(Touch Area 2 == FALSE)] %
i.e. both fingers off Maobile Display
Fig. 7.32 “Emergency Stop” Implementation in “M_MixedRC_Walker_l% :Q!’

7.6 “Camera Tracker” Project V
The reader may remember from Section 4.4 that the author had no success gn moWhiting a mobile phone

in front of the MINI robot and maintaining any stable robot motion because location of the extra
weight of the Mobile Phone. The next option is of course is to mount t#he §loR* Phone on the backside of
the MINI (see Fig. 7.33) for this “Camera Tracker” project. \

Mounting Mobile Device on MINI
in “M_CameraTracker.tsk3"

OFFSETS USED:
Servo 11 = 3°
Servo 12 = -3°
Servo 13 = 8°
Servo 14 = -8°

Calibration Pose Initial/Ready Pose
MINI can only Rotate Left/Right

N
&3 “Back Mount” of Mobile Phone on Author’s MINL.

.
Fig. 7.33 also s x INT-OFFSETs to be applied to Servos 11, 12, 13 and 14 (essentially the ro-
bot’s knee and an ints) to keep the overall Center of Gravity within the MINI’s ground contact area for
the Calibratio s well as for the Initial/Ready Pose.

With jas
(ho

esigls taking/recording pictures and videos via the built-in cameras on the Mobile Device, the
R+m.PLAY700 App also provides several rudimentary Image Processing modes (see Fig. 7.34):

nting option, the author could make the robot turn Left and Right in a stable manner
nd® stability obtained for walking Forward or Backward).

e In the “Face Detection” mode, the SMART “Face Detection Area” command would return a
number between 1 and 25 to the TASK program, representing the Zone Number where the
“face” was detected.

42

In the “Color Detection” mode, only pixels within Zone 13 (i.e. Screen Center or Position [3,3])
are evaluated for their color values to see if they fit, on the average, certain “fixed” internal nu-
merical RGB criteria for 4 possible color values: 2 for Black, 3 for Red, 4 for Green and 5 for
Blue.

In the “Motion Detection” mode, the SMART “Motion Detection Area” command would return
a number between 1 and 25 to the TASK program representing the Zone Number where “ %
tion” was detected.

ection
Area” command would return a number between 1 and 5 to the TASK program if fggfuser cho-

sen color is found among those zones at runtime. If no such-specified cofor is found, a value of
“0” is returned to the TASK program.

43

Chapter 8: Using EDBOT™ Tools

So far when we use ROBOTIS software tools, the robot run-time codes always reside on the MINI’s
OpenCM9.04-C Controller in a “compiled” binary machine code format which is about the best situation for
a robot to perform in, along with local access to Dynamixels and Sensors at a communication rate of 1 Mbps
(Chapter 6). However, we also saw the limitation of the MINI’s firmware as we had to leverage in t
PLAY700 App for Multimedia Services, albeit at 57 Kbps (Chapter 7). (L

h

In this Chapter 8, the robot control software runs instead on a general-purpose personal computgf SN
the Windows PC, Mac or Raspberry Pi and inside an “interpreting” shell, meaning that each li % e 1s
“interpreted” one by one at run-time and converted into an appropriate command packet. This %&s then
sent via the EDBOT tool to the OpenCM9.04-C through the BT communication hardware mercWS 7 Kbps.
Then EDBOT waits for the MINI to respond with Dynamixels and Sensors data which @lmed via the
same 57 Kbps BT port (see Fig. 1.17). The EDBOT/SCRATCH wait time for Sensoig data ound 100 ms,
so data throughput is the main issue to consider when programming with EDBOT. HOV, this throughput
issue is traded for the access to a much more powerful and faster computer WW ety of Multimedia
resources to tap into. When using PYTHON with EDBOT, more sophisticatea;rogr ming techniques such

as multi-threading and access to software packages like OpenCV are then a to MINI programmers.

In January 2019, SCRATCH 3 (https://en.scratch-wiki.info/wiki/)0) was released with an online
interface and a desktop interface (https://scratch.mit.edu/download),* arch 2019, EDBOT V.5 was re-
leased allowing the additional usage of SCRATCH 3 via a web ie (http://scratch.ed.bot/) — a desktop
version may be released in the future. Unfortunately, this Web yields a slower communications speed
with the MINI robot and makes autonomous behaviors hard@ eve, thus this chapter concentrates on the

usage of the SCRATCH 2 Offline Editor instead.

This chapter uses EDBOT V.5.2.0.1523 which alNs multiple robot programming via three main soft-
ware interfaces: SCRATCH, PYTHON and Jay€Script, 2nd with additional languages such as Node.js, Java
and C# and other platforms such as Chro Macs and Linux (http://support.ed.bot/edbot-software-
index.html). This version also accommo 17-servo configuration of the MINI and the functionality of
MOTION-LIST/PAGE “0” and - make use of the EXIT MOTION-UNITs
(http://emanual.robotis.com/docs/en/sgftwa¥e/rplustask3/task parameters/#motion-index-number).

In this chapter, an individugsuser is assumed, i.e. the user’s PC is used as the local host (Port 8080)
and the EDBOT tool is used'\ rver mode.

Q= Q

Fig. 8.1 Multi-robot application of the EDBOT tool with SCRATCH 2.

44

For this Chapter, the author assumes that the reader is already familiar with MIT SCRATCH 2 software.
If not, the user is recommended to first read up on such works as Ford (2014), Warner (2015) or Vlieg (2016)
to have a thorough understanding of the SCRATCH 2 language. In this Chapter, only selected SCRATCH 2
features, most applicable to robotics and unique to the workings of the Edbot software, would be presented.

8.1 Edbot’s Hardware and Software Installation Requirements

The user will need to purchase the appropriate Edbot MINI kits (which has one IRSS-10 mounted o Q
1) and/or software product keys from Robots in School Ltd. (https://shop.ed.bot/collections/product e
user has already obtained a MINI robot elsewhere, the user can just buy the Edbot product key fro
in School Ltd. (https://shop.ed.bot/collections/products/products/edbot-software) or from RO, SA
(http://www.robotis.us/edbot-software-product-key/). In this book, the author assumes that the is us-
ing the EDBOT tool (Version 5.2.0.1523 or higher).

Hardware wise, the EDBOT software works with the ROBOTIS BT-210 (http:// s us/bt-210/).

Please view Video 8.1 for the typical steps needed to install the EDBOT sofigare e user’s PC. Im-
portantly, each software product key will be bound permanently to the specwzms used, thus the
user will need to plan out carefully his or her “robots” organization if the gmer wdnts to use the EDBOT
software with multiple robots. Fig. 8.2 shows the author’s EDBOT set :&mbots: Zeeb is a DREAM

robot, Zomby is a PLAY700 robot, while Zeera, Zira and Zork are MK\

& Edbot Software i,J
Server Scratch View Tools Help
Robots LScan J
(=
Zeeb \ Active user bypassed ‘ ‘ Enabled -]{ Connect \‘!]I
Zeera | Active user bypassed || Enabled - || connect \w.l
Zira | Active user bypassed \ ‘ Enabled ¥]l Connect ‘ .
Modsl: | Edbot] m—n
-
— * B
Type: | ERM161] P =
Connection: [Local @ b8:63:bc:00:1f:62 | | €/ eomor A7
= = - | —a 0 I
Status: | ENABLED, DISCONNECTED | ek o - A} I
Zomby i Active user bypassedii ‘7Ea9|ed - || Connect | ‘J I
C Zork | Active user bypassed || Enabled ~ || connect | @) | ||
Model: | Edbot] o)
— X "o
Type: | ERM161 l
'S Connection: | Local @ b8:63:bc:00:91:83 't E 901’
\ Status: | ENABLED, DISCONNECTED

% 8.2 Author’s EDBOT Setup for his 2 MINI robots (Zira and Zork).

ject File Conversion

sen¥gd in}his Chapter, but the reader may use a different name for his/her robot(s), and thus will need to do

8.2 SC Q
Q r uSed 2 MINI robots named “Zira” and “Zork™ to create the SCRATCH 2 example codes pre-
an upd®ing process for the SCRATCH SB2 files provided by the author.

45

8.3 SCRATCH 2 Blocks Provided with EDBOT Software

For the MINI, EDBOT provides 20 Stack Blocks and 7 Reporter Blocks which can be accessed under the
“More Blocks” item of the SCRIPTS tab (see Fig. 8.8):

e Group 1 (see Fig. 8.9) includes Stack Blocks that work specifically with the MINI Default Motion
Group so they are not used in this Chapter as we use Custom Motion Groups.

e Group 2 (see Fig. 8.10) are for general use, and the Motion Control blocks use the standard \\/?mb

Index Numbers as argument.

Scripts Costumes Sounds < ’
B rotion l Events
B Looks l contror
l souna ll sensing
lren B operators
B oo [“ore iocks |
Edbot ¥ e |

S t » cr <

*

name of motion number €9

Fig. 8.8 EDBOT provides 20 S Ks and 7 Reporter Blocks.

Fig. 8.8 also shows the standard SCRATC ocks which are grouped under different categories: Motion,
Looks, Sound, Pen, Data, Events, Control,Sen and Operators.

Y o
Edbot SCRATCH-2 Blocks
Group 1

v

Using MINI Default Motion Group

basic motion crouch Y
\Q:

sport motion goalie block

greet motion bow 1

K dance motion break dance

gym motion backward roll

Q fight motion karate left 1
QO Fig. 8.9 Group 1 of EDBOT’s Stack Blocks.

46

v

Edbot SCRATCH 2 Blocks

Group &

General use Stack Blocks .

Fig. 8.10 Group 2 of EDBOT’s Stack Blocks & Reporter

motion number @@

set motion lights off

set servo @B off

set servo) colour CiR9 (Single-Actuator)
set servo speed

set servo position
set servos [

set servo colours [EE]

set servo speeds

set servo positions [[IEEUENGE]

set head IR sensor off

8.3.1 MOTION CONTROL Blocks
Fig. 8.11 shows the currently supported EDBOT MOTION-related’bl

tion Playback)” command.

-

Reporter Blocks

name of motion number 0

spat servo @ position
spot servo load

Spot servo positions
Spot head IR sensor

Spot current word

Spot connected

Multi-Actuators)

Spot motion number o

Spot set motion lights off

name of motion number

8.3.2 SINGLE & MULTI SERV ks
orted EDBOT SERVO-related blocks:

Fig. 8.12 shows the currenl
e The “Single-

8.3.3 SENSO cks

and later).

Fig. 8 m’s Motion Control Blocks.

Edbot Sensor Blocks

Spot set head IR sensor off

Spot head IR sensor

Fig. 8.13 EDBOT’s Single NIR Sensor Blocks.

47

QO
Qb

B%N
¢’
e The “Name of Motion Number” Reporter Block is a uniq&% T feature.

e The “Set Motion Lights” Stack Block is equivalent to

N'Q)

Edbot Motion-Control Blocks

OTIS “Joint LED Auto ON (Mo-

x ocks correspond the various ROBOTIS commands such “Goal Position”,
. for individual servos, and they function in a similar manner but with

“Goal Veloc'% .
slower dﬁ@hput.

BOT currently assumes that there is only ONE IRSS-10 sensor connected to Port 1 of
aqN\2. 8.13) — for its SCRATCH implementation. To access the full range of sensors and to use
all @ rt¥like in TASK previously, the user needs to switch to using PYTHON with EDBOT (see

8.3.4 SPEECH Blocks

Fig. 8.14 shows the Speech Blocks implemented by EDBOT. These “audio” SAY Blocks are different
from the standard SCRATCH’s SAY Blocks which are “visual display” and “non-audio” outputs.

Edbot Speech Blocks Q
spot say [EETEN (L
Spot say [GECIN until done Q
q/

Fig. 8.14 EDBOT’s Speech Blocks.

8.3.5 GENERAL Blocks

These GENERAL or SYSTEM blocks relate to the overall operation of the erM4-C Controller:
“Reset” is a Stack Block and “Status” is a Reporter Block (see Fig. 8.15). “Reset” Wgfurn off all hardware
components and stop all operations on the OpenCM9.04-C, but the SCRAT de will still be active. The
“Status” block is handy to check if your MINI robot is “Enabled” or “Qo ted? to the EDBOT software
on the Desktop Computer or not, especially if Bluetooth happens to t time to connect properly
when a SCRATCH project starts to run. O%

8.4 RC Walker with Independent Servo SCRATCH Pro'Q?

In this section 8.4, the author’s goal is to create Project that is equivalent “as much as pos-
sible” to the “M_RC_ Walker IS.tsk3” (see Sectign 6.8 whereas Servos #1 (Left Shoulder) and #17 (Head)

can be independently controlled from the effecygf the clrrently performing MOTION-LIST/PAGE.

8.4.1 Differences between TASK & S| C
Let’s first discuss important diffem tween ROBOTIS TASK and SCRATCH+EDBOT:

e The RC-100 provides a 16Ngisfhessage that can tell the programmer about the status of all But-
tons U-D-L-R-1-2-3-4"5_6 (see Section 6.4.1), while SCRATCH can access most keys of the
standard compute& rd but only as a “single” key being pressed. Fig. 8.16 shows the dif-
ferences in h utton” or “Key” events between TASK and SCRATCH and it is obvi-

ously much r when using SCRATCH.
23

& Event Handling Differences
Q TASK SCRATCH

WAITWHILE (3 RemoconData Amived == FALSE (0))

Jataln =) Remocon RXD
IF (Datan == U)
{

® Motion Index Number = @ Motion[2]:g) Advance

}

motion number 9

Zira

Fig. 8.16 Event Handling Differences between TASK and SCRATCH+EDBOT.

48

8.4.2 Keyboard Solution “M_RC Walker16 1S.sb2”

This SCRATCH project uses the Default Motion Group for the standard MINI with only 16 servos
and we’ll use the following MOTION-LIST/PAGE:s:

MOTION-LIST/PAGE (1) is used for “Initial Position”.

MOTION-LIST/PAGE (19) is used for “Advance”.

MOTION-LIST/PAGE (20) is used for “Reverse”.

MOTION-LIST/PAGE (15) is used for “Right Turn”. (L
MOTION-LIST/PAGE (16) is used for “Left Turn”. (LQ

Fig. 8.17 shows the Costumes used for robot Zira: “Idle” and “Ready”.

Costumes in in
“M_RC_Walkerlb_IS.sb2"

New costume:
1.
d/am

Fig. 8.18 shows the MAIN SCRIPT for “M_RC

e Block 1 is one of the “Event” type of ,Blocand it would start whenever the user clicks on the
FLAG Menu Item found on the T ight cOrner of the STAGE Area.

e Blocks 2 and 3 belong to the “Ldgks” &tegory. Block 2 displays the costume “Zira Idle m”
onto the STAGE. Block 3 di Text Balloon, also on the STAGE and usually located at
the top right of the associ TE Zira, which says “Zira Not Ready!” for 2 seconds then
this Text Balloon would &sapp}ar.

8.5 Dual RC Walkers SCRATC%TOject

Although EDBOT can s Itiple robot connections, the results from Section 8.4.2 show us that
there is no feasible way to WQn wo MINIs independently from each other as SCRATCH can only detect

a “single” keystroke at rom the operator. But it should be feasible to control two MINIs synchro-
nously to do the sa as commanded by the operator’s keystroke sequence.
In this “Dua, alkers” project, we’ll combine keystroke events with MESSAGE BROADCAST

troller and ots Zira and Zork (see Fig. 8.20). The “Duck” Controller will have a supervisory role
of th between EDBOT+SCRATCH and the robots. It also intercepts the incoming operator’s
key@ hd broadcasts the appropriate messages to the 2 robots for them to perform the commanded mo-

tion

techniques to nously control two MINIs. We’ll also use 3 SPRITEs for this project: “Duck” Con-

49

SPRITEs used in the
Dual RC Walkers Projects
[14D RC_Wabers 1 S ~e

Zirshesty T

Eae 2):

Fig. 8.20 Various “Keyboard Input” SCRIPTS in “M_RC_Walkerl6_IS.s@

Two versions will be described: a Simplified Version having a bare-bone structurcgsg®nough to get the
job done, and a Verbose Version that can help us see the interactions between keyNgrokgs, messages and
robot behaviors.

8.5.1 Simplified Version “M_Dual RC Walkers M S.sb2”

The project “M_Dual RC Walkers M_S.sb2” uses the MOTIO&“Q%P named Smart Avoider
from the file “MINI_Custom.mtn3”.

The “Duck” Controller uses 3 types of SCRIPTs which a r:ﬁed in Figs. 8.21, 8.22 and 8.23.

Fig. 8.21 describes the Controller’s FLAG Scripts, 1 a and one for Zork (i.e. they are set to run
independently and simultaneously when the opera the GREEN FLAG Icon). The reader can
see that Zira and Zork share the same programml lo except for the use of different robot names in
EDBOT-related Blocks. Thus, the author wo e Zira s Script as demo code:

8.5.2 Verbose Version “M_Dual RCgllVaMgrs " M V.sb2”
The “Verbose” version “M_Dual ﬁ) kers M V.sb2” is designed with several goals:

¢ Implementation of SPRI cific parameters “ZiraInMotion” and “ZorkInMotion” to obtain
similar functionality e TASK’s MOTION-STATUS flags.

e All robots Sprite %;re now MESSAGE-driven, while all FLAG Scripts are reserved for
the ControlleNEp or a more hierarchical but also distributed control structure.

e New mess% sks are used to show details of the progress of keystrokes and broadcast mes-

sages d’& ime.

Fig. 8.2 sye FLAG Scripts used by the Controller Sprite to initialize Zira and Zork (let’s use
Zira’s Scy emo):

O

50

Fig. 8.28 Controller’

Controller: FLAG Scripts in
“M_Dual_RC_Walkers_M_V-.sbe"

ZIRA's ZORK’s
when clicked when clicked
--q:' ZirsRssdy I o | set zokieady o [
t TR SWEunblE | Zork connecte:

Zork set motion lights off

Zork Connactad

ira ira Cannecte
Ziri ecta
n n
wait €D secs t @ sec:
broadcast Zira_Start broadcast Zork Start Q
2

s FLAG SCRIPTS for Zira and Zork in “M_Dual RC Walkers M_¥.s

e First, SCRATCH sets Parameter “ZiraReady” to “0” and waits for the BT cogfiectign t0 Zira to
get established.
e Next, EDBOT sets Zira’s MOTION LED setting to OFF and voices out "ira Connected”.

e Next, SCRATCH broadcasts “Zira Connected” and waits for 3 seco

SCRATCH then displays the Text Balloon “Zira Connected!” for 2 sqgonds
SMthat Zira can exe-

cute its “Zira_Connected” MESSAGE Script (Fig. 8.29). 6
e Lastly, SCRATCH broadcasts “Zira_Start”. .

The other Scripts for Controller Sprite remain un-changed, thus t&& not repeated here.

Fig. 8.29 displays “Zira_Connected” Script showing Zira’s ste er receiving the message “Zira_Con-

nected’:

-
Zira: “Zira_Connected" Script in

“M_Dual_RC_Walkers_M_V.sbe"
when I receive Zira Connected

switch costume to Zira Idie m

Zira EEVA Zira Idle

say EEXETIN for @ secs

set ZiraInMotion to [

Zira motion number G

set ZiranMotion to]

Fig. 8.29 Zira’s '%Jnnected” SCRIPT in “M_Dual RC Walkers M _V.sb2”.

8.6 Dual Random Walk

In this Section 86,
veloped for Project
Projects, 3 SPRIT

ting
Zof’s i

ntical behavior:

TCH Project

Zork are programmed as autonomous robots using the overall algorithm de-
mWalker.tsk3” described in Section 6.6. Same as for the other Dual Robots
troller, Zira and Zork) are used for this Project “M_Dual RandomWalkers.sb2”

mart Avoider Motion Group.

e Controller’s FLAG Scripts used separately for Zira and Zork to program their “Get-
iors. Again, the author only describes in details Zira’s behaviors as a demonstration for

51

Controller: FLAG Scripts in
“M_Dual_Random_Walkers.sbe"
ZIRA's

set ZicReady to [l

Zira connected

Zira motion number e Zork motion number e

T e Q
zia say BN until done Zork say until done
say for o secs say for o secs
bmulmt Zira_Start z
(l/

Fig. 8.32 Controller’s FLAG SCRIPTS for Zira and Zork in “M_Dual_Random_V@.st’.

\v

8.7 Using PYTHON y

When using PYTHON with EDBOT, the user can get “under the hood” todgarn More details about the
interface between EDBOT and the ROBOTIS firmware used on the OpenC C. The user also can get
to other utilities that were not implemented in the SCRATCH API sucle

e Full access to all 4 I/O ports (i.e. we can use all 3 NIR@j RSS-10 and DMS-80).

e Custom read/write to any address defined in the Contr le of the OpenCM9.04-C (i.e. we
can now apply JOINT OFFSETs).

A PYTHON program will require more steps than SCRATCH program to get the MINI to
do a typical action, but its execution speed is much hg t will allow the user to tap into the vast re-

sources of other Python packages available at the Pyth¥g Software Foundation (https://pypi.org/ and
https://docs.python.org/3/contents.html). The site Python Central is also a great resource for learning
and practicing Python programming (https:// thoncentral.io/).

EDBOT V.5.2 was a major upgrad; nged fundamentally its Python API for the MINI, thus all
sample codes discussed in this sectiorffusedg¢i® EDBOT V.5.2.0.1523. The reader is assumed to have some
basic skills in Python Programming, ;Cje author is recommending these books to get the reader better
prepared for materials presented jpmthis section (web resources abound for Python also):

e “Python for Tw
Ainarozidou,

eens: Learn Computational And Algorithmic Thinking” (Bouras and

rse”, 2" Edition (Matthes, 2019).
nts of Python, the user is recommended to refer to these works:

ming in Python 37, 2" Edition (Summerfield, 2010).
on 3 Standard Library by Example”, 1% Edition (Hellmann, 2017).

@r 1yusing Thonny V.3.2.3 as the Integrated Development Environment (IDE) which is availa-
ble @wn oad at https://thonny.org/ , where it has a video demonstrating the basic usage of this IDE.
Tho .3.2.3 also installs Python 3.7.5 for the user as part of its own installation and Thonny has its own
GitHub page at https://github.com/thonny/thonny.

52

8.7.1 Basic Steps for PYTHON programming with EDBOT

The complete EDBOT’s PYTHON API is available at this link http://support.ed.bot/edbot-python3.html
which has information on how to set up and use EDBOT with PYTHON. The author assumes that the
reader has installed EDBOT and configured it properly for the user’s robot(s) — please review Section 8.1
and Video 8.1 as needed. The author uses THONNY 3.2.4 as his Integrated Development Environment, Q

and it is bundled with PYTHON V. 3.7.5.
Let’s first assume that the user has started EDBOT and connected successfully to a chosen robot f%

Zira (see Fig. 8.44).
£ Edbot Software =] X
Server Scratch View Tools Help Q

Robots Scan
Zeeb Active user bypassed Enabled ~ | Connect @
Zeera Active user bypassed Enabled ~ | Connect | @ VV
Zira Active user bypassed Enabled - = ®

Zomby Active user bypassed Enabled hd Connect '
Zork Active user bypassed Enabled ~ Connect @
Messages Clear

2020-01-05 16:56:45 Bluetooth: Connecting to Zira
2020-01-05 16:56:49 Bluetooth: Successfully connected to Zira

Fig. 8.44 EDBOT connecteira (author’s setup).
Next, there are definite and orderly steps thggthe us& must perform in order to successfully control one

or multiple MINI robots in a PYTHON prog

1. Import the “edbot” package fi ython Package Index (PyPI) web site

(https://pypi.org/project/cgl/)\gnd also “time” and “sys” as needed:
e import edbot
e import time if time functions are used

e import Sy§ # as we’ll need to use sys.exit()
2. Connect to ERBmINWgIn Edbot Client via the local Port 8080 on your personal computer with

.)
3. Creat Qriable (e.g. “robotl”) and assign to it the user’s robot name (e.g. “Zira”) as previ-
0 figured in EDBOT (see Figs. 8.2 and 8.44):
botl = “Zira”
0 the previous robot name with EDBOT and verify its configuration, i.e. whether the user’s
obot is an “edbot”, “dream” or “play” robot. The MINI is an “edbot” type and if there is a con-
figuration error, Thonny ought to do a “system exit™:
e ifnot robotl in ec.get robot names("edbot"):
. print(robotl + " is not configured")
. sys.exit()
5. Wait for actual connection between Thonny (via EDBOT) and the physical robot:

53

e print("Waiting to control " + robotl +"... "', end="")
e cc.wait_until_active(robotl)
o print("Got control of " + robotl + "!")

8.7.2 Sensors Throughput Applications

Let’s get started with a basic Python program reading and displaying the current readings of two I%
10 sensors out of Ports 1 and 4, a DMS-80 out of Port 2, and the Present Positions for Servos #1 an

to keep track of the real-time values of all its sensors and actuators connected to each r figured in
EDBOT’s setup.

Each robot’s sensors-data structure is a PYTHON dictionary named “reporters” (j
wal values” shown

robot “Zira
But before we can get into those gory details, we need to examine the Data Structures um BOT
obot

port.ed.bot/edbot-python3.html#reporters), which is a list of paired “keys” and “n
below as an example for robot “Zira”:

"reporters': { 9V
"portl": 10, . 0
"port2": 650, \\

"port3": 335, O
"port4": 22, Q
} O

For example, the current raw value forj[h&“le IRSS-10 sensor (with “port1” key) is “10” and the cur-

rent raw value for the “port2” DMS-80 se is valued at “650”. “So far, so good”, the reader must reckon
at this point! But it is getting bad quickl next paragraph will show.

use a method named “ec.get_dat. //support.ed.bot/edbot-python3.html# get data) which will return
a “huge” dictionary containing se ata (+ other data structures), i.e. dictionary within dictionary:

In order to get to this specific Z:':a rters” dictionary from inside a Python program, we need to
”» (

"server" server information
Versmn" "
"platfor{\ ows 10, 10.0.17134.523, amd64"
Q 9TBvXviY", # private session token
@Co plete": True, # true after connect() returns
C‘"robots": {

"Zira": { # name of the robot

"enabled": True, # enabled?

"connected": True, # Bluetooth connected?

54

"reporters': {

2

"activeUser": "Python...", # currently active user

"model": { # the robot model Q
"name": "Edbot", (L
"type": "ERM 162", Q
"key": "edbot" (L

} O

§ V
v/

i
Unfortunately, the Zira’s “reporters” dictionary, that we are intereste is “buried” inside the “robots”
dictionary highlighted in yellow as shown above. This means that we % use the value “Zira” and apply
it to the “robots” dictionary in order to extract out the “reporters”% of interest, which is then can be

extracted further out for its individual “sensor” key and its corr g numerical value! The implemen-
tation of this complex procedure will be shown later in Fig. 8.4@

8.8 MINI PYTHON/EDBOT Applications

Using PYTHON with EDBOT will give us th @ities to compare PYTHON solutions to similar
TASK solutions created for the same type of pro as “RC Walker” and “Random Walker”, but it

will also allow us to extend the capabilities gfthe I with “Dual MINIs” and “Web Cam” projects using
Threading and OpenCV libraries (feature are now not available using ROBOTIS TASK V.3).

and constraints used in EDBOT:

1. Inthe TASK project SWalker IS.tsk3” (see Section 6.4.3), the parameter “MOTION-
STATUS” was key to gic design of this TASK program, but there is no such equivalent

parameter in EDB@T.
2. Previously, i CH/EDBOT applications (see Section 8.4.2), the Play-Motion Block

would wag called Motion is finished playing before letting the next Block activate.
Howeve a%PYTHON is used with EDBOT, the method run_motion() can be used with ei-
ther % O-WAIT option (http://support.ed.bot/edbot-python3.html#run_motion).

3. Alsg1 ous SCRATCH/EDBOT applications, there was no way to set the JOINT-

O T of the XL.-320 servos. But the PYTHON API has a method called set_custom() that
Q ow be used to set these JOINT-OFFSET parameters for Servos #1 and #17.

Let’s first review the key design

he€:DBOT PYTHON API does not allow access to sensors and servos data during a MOTION
LAY.

Qe’ll use the Pygame library for the display and keyboard interfaces
S://www.pygame.org/docs/ref/display.html and https://www.pygame.org/docs/ref/key.html) and it turns

out that Pygame also implements the same “sequential” and “single-key” input functionalities that
SCRATCH was using. Thus, the combined-buttons approach of TASK programs cannot be reproduced in
PYTHON/EDBOT applications also.

55

8.8.1 RC Walker with Independent Servo Control

In this project “M_RC Walker IS.py”, the Pygame package is used to monitor the user’s keyboard in-
puts and to provide graphical screen outputs at run time. The web site “https://www.pygame.org/docs/” has
all the official PyGame documents that the reader can consult as needed. If the reader prefers a regular text-
book, the author recommends the work by Kinsley & McGugan (2015).

The MINI robot named Zira is used in this project and Fig. 8.51 is a typical screen capture at run ti

| o
DEH 0% 5500

M_RC Walker ISy

background_image_filename = 'Zira_Ready.jpg'
59 SCREEN_SIZE = (388, 292) & RCWabker IS
@ messagel="1) Tap Arrow Keys to move robot”

message2="2) Tap 1 to raise left arm, 3 to lower left arm to normal"

message3="2) Tap 2 to start head scan L/R, 4 to stop head scan"

er left arm to normal
o stop head scan

o
Fig. 8.51 Screen capture at run time for “M_R(w(er_ls.py”.
8.8.2 Dual RC Walkers

The reader may recall the “Dual RC Walkers” proj ect TCH (see Section 8.5) where the two

MINIs’ motions “had to be synchronized” due to the n SCRATCH that can handle only one
“key-stroke” at any one time. As PYTHON will all T programming at a lower level, the author’s
c

hope was that independent Remote Control of t ould be achieved when using PYTHON.
Thus, for this project “M_Dual RC Wa ’, the goal is to independently “remote-control” two

MINIs (Zira and Zork) from the same PY: rogram. The usual arrow keys U-D-L-R will be used to

control Zira (as “robot1”) and the key -S will be the equivalent “arrow” keys for controlling Zork
(as “robot2”) — see Fig. 8.61.

“M_Dual_R{C_Walkers.py"
Variables Definition

robotl = "Zira"
robot2 = "Zork"

:' robotl_mode = 'n’
. 3 robot2_mode = 'n'
\ background_image_filename = 'Zira_Zork_Ready.jpg'
K 35 SCREEN_SIZE = (927, 349)
5 messagel="1) Tap Arrow Keys to move Zira"
37 message2="2) Tap [w,z,a,s] Keys to move Zork"

@ Fig. 8.61 Variables Initializations in “M_Dual RC Walkers.py”.

ists the user methods defined for this project, they are fewer than for the previous project

12
“M@\!alker_ls.py” because the author wanted to show a different way to implement Motion Control
for the MINIs whereas the EDBOT method run_motion() is used directly in the Main Method:

56

“M_Dual_R(C_Walkers-py"
“"Motion™ Methods Definition

1 def init_pose(robot):
ec.run_motion(robot, 6, wait=False)

def stop(robot):

ec.run_motion(robot, 6, wait=False)

def r_arm_wave(robot):
ec.run_motion(robot, 8, wait=False) Q

def 1_arm_wave(robot):
ec.run_motion(robot, 9, wait=False)
Fig. 8.62 User Methods in “M_Dual RC Walkers.py”.

e The only “new” user method is stop(robot) whereas the author wanted t use@ON -1
(Line 18) as applied in previous TASK and SCRATCH projects, unfoﬂwhe EDBOT V.
5.2.0.1523 does not yet support this feature in PYTHON (even thougw orted this feature
in SCRATCH - see Fig. 8.26). This issue will probably get sorted out W later version of

EDBOT, thus the author left Line 18 in the source code for the r to try out in the future.
e So for now, method stop() corresponds simply to run the MO) to get the robot into Ini-
tial Pose.

8.8.3 Autonomous Random Walker & Obstacle Avoider

The reader may recall from the Random Walker SCRA]ect (Section 8.6) that SCRATCH would
only support the use of one IRSS-10 sensor connected P us this SCRATCH solution was more
limited in its response when an obstacle was found. er hand, the PYTHON API allows the use of
all sensors on all 4 Ports. Thus, the PYTHON prgject S ! RandomWalker.py” can use two NIR sensors to
respond to a found obstacle in the same way a AS -equivalent project “M_RandomWalker.tsk3” in
Section 6.6.

as well as the CALLBACK Function the most recent Sensors Data at any point in this TASK pro-
gram. Unfortunately, these two featu not available currently in EDBOT/PYTHON V. 5.2.0.1523:

¢ MOTIONs “0” a ‘@o not work properly in PYTHON, although they worked fine for
SCRATCH 2.
e By design, E oes not update sensor and servo data while a MOTION-LIST/PAGE is
playing. ,
Thus, althoug goals and algorithm are the same between the TASK and PYTHON versions

for the Random Pr0] ect, the reader will see that some implementation details had to be changed in
the PYTHO

The TASK project “M_Random\@ rehed heavily on using MOTION (0) and MOTION (-1),
pr

Fi 1g the Definition of Variables used in “M_RandomWalker.py”:

Ithough both robots “Zira” and “Zork™ have their respective Variables defined for them (Lines
160-161 and Lines 162-163) this PYTHON code is made to control only 1 robot, but it can be
either Zira or Zork. Variables “robotl”, “robot2”, “obstaclel”, “obstacle2” and “threshold1” are
Global.

57

“*M_RandomlWlalker.py"™
Variables Definition

robotl = "Zira"
robot2 = "Zork"
obstaclel = @
obstacle2 = @
thresholdl 100
50

threshold2 Q
threshold3 30
w_direction = @
1 w_repeats = 0
ir_left = 0@
ir_right = @
Fig. 8.68 Variables Definition in “M_RandomWalker.py”. ;
n

e Please note that “obstacle]1” and “obstacle2” are designed to be set to “0” wh& nogpbstacle is

found, and when an obstacle is found by the respective robot (“robot1” AN robgiZ”), they will
be set to “1”. V
There are many methods used in the program “M_RandomWalker.py”:
e The various MOTION related methods already described in p @PYTHON projects, such
as init_pose(), forward() and |_arm_raise(), won’t be re & @e.
e Two methods of robot stoppage are defined - reg_stop() er_stop(). Method reg _stop() is
to be used when the robot encounters an obstacle whe s just concluded a set of random-

ized moves. Method emer_stop() is to be used bot encounters an obstacle while still
performing a set of randomized moves (see Fi

¢ Two “random-based” methods are used t t ot’s move direction and the number of re-
peats for such move — set_direction() an%eats() (see Fig. 8.70).

o Method walk _execute() takes the p
and commands the robot to perf

on which robot among “ro
e Method check NIR() is qglled

ious Myndomized move-direction and move-repeat values
h-directed moves (Figs. 8.73 and 8.74).

stacle” to either “obstaclel” or “obstacle2” depending
bot2” is being tested (Fig. 8.71).

ethod walk _execute() at the end each robot move to check

if an obstacle is found, anONGg#Bues the start of an “emergency stop” when needed (Fig. 8.72).
e Method flash LEDJ, alled at the conclusion of a successful obstacle avoidance procedure
(Fig. 8.75).

8.8.4 Dual Random er with Thread Programming

in Section 8.6 for its SCRATCH implementation which was using the con-
cepts of Event Pr via “Message Broadcast” and “Message Received” between 3 independent
Sprites (Zira, Z Duck as the Game Controller). The same Event Programming approach will be used
in this PYT roject using PYTHON-equivalent constructs which are “Thread” and “Event” objects
from the g ng” module of the PYTHON Standard Library

(httpe™¥d ython.org/3/library/threading.html#). The following web page was very helpful to the author
by jovigng working code snippets used in this project: https://pymotw.com/3/threading/index.html#mod-
ule-ti™®&ding — it is maintained by Doug Hellmann.

This project was

This PYTHON project “M_Dual RandomWalkers.py” uses the same approaches as previous projects
regarding EDBOT robot control and PYGAME keyboard/graphics interfacing so only the newer concepts of

58

threading and event signaling will be described further in the following paragraphs. If the reader is inter-
ested in textbooks to learn more about “threads” or “concurrency” in general, the author would suggest Hell-
mann (2017) and Nguyen (2018).

The author was delighted to find that all Methods created for the Single Random Walker project (with
Zira) in Section 8.8.3 were re-usable in the Dual Random Walkers project (with Zira and Zork). The Main
Endless Loop used in the Single Random Walker project needed to be recast as a Thread for Zira and du liQ
cated as another Thread for Zork in the Dual Random Walkers project, with minor code changes to adjst
for the robot names, and some code additions at the beginning and at the end of each of these Threa, A
third new Thread had to be created to act as the Game Closer, while the Main Method acts as the
Starter.

Fig. 8.81 shows all the import modules used in “M_Dual RandomWalkers.py”. C)
“M_Dual_RandomWalkers.py™

Import Packages

import sys V
import time -~

import edbot
import random
import pygame
from pygame.locals import *

import threading
-

99

Fig. 8.81 Modules imported in “M_D Walkers.py”.

In PYTHON, a thread can be simply created as a regul
various robot maneuvers (https://en.wikibooks.org/wilg
use the Event Object formalism (https://docs.python!

n like the ones previously created for
Programming/Threading). As we plan to
wprary/threading.html#event-objects), each thread
will also need a special command called messa, ait(Nyhich indefinitely blocks the execution of all codes
that follow the message.wait() command. W%message.set() command is asserted in the main or in
other threads, then this thread’s code executiongest®ts and proceeds as normal for the rest of the
thread/method. Thus the message.wait is the equivalent of the SCRATCH’s HAT command
“When I receive Message”.

As an example, let’s look at the deT™#0f Thread go Zira() (see Fig. 8.82):

e Line 164 lists the @/ ariables used for this thread. “game_start” and “game over” are
Event object NCNeeset, winner, robotl, obstaclel, threshold1, threshold2, threshold3) are

standard Vari s ®fined in the Main Method.
e Line 1668 %command game_start.wait() which effectively blocks the execution of the re-

rnainin%1 his thread which then can only wait for a signal game_start.set() from another
thre od (which will be the Main Method for this case — see Fig. 8.86). Thus the signal
Q rt.set() is equivalent to the SCRATCH’s Broadcast Message block.

t

h&signal game_start.set() is received by this thread, Line 167 prints out, on THONNY’s

Q@\t t console, the message “Thread go Zira starts”.

59

8.8.5 Color Tracker with Web Cam using OpenCV

The reader may recall the TASK project “M_CameraTracker.tsk3” in Section 7.6, leveraging the
R+m.PLAY700 App to use the camera from a smartphone. This project was limited because of the
R+m.PLAY700 App itself and because of the weight of the smartphone as the MINI could only turn left or

webcams are available to be mounted of the MINI’s head. The author uses a Logitech C270 with its
removed for Zira and Zork (see Fig. 8.89). Furthermore, USB cables can be up to 25 ft long, so the
should have good freedom of movement, although it does have to drag that USB cable around v%

right in a stable manner.
But now that we are using PYTHON from a Desktop Computer, inexpensive and light-weight USBgLQ
d

influence its walking moves.

Fig. 8.89 Zira and Zork equipped with webcams moygIdN QW their head pieces.

Another advantage when using PYTHON which is a widgly,a * language is the large repository of
modules/tools found at the Python Software Foundation https: @ .org/. This section 8.8.5 would illustrate
the use of the OpenCV module and a related module called @ (https://pypi.org/project/opencv-
python/). If the reader is using THONNY, it is reco r@ de®0 use the “Manage Package” tool to search
for the module “opencv-python” and install it. This piMgess will install all related modules for the reader in
one step. The author is using OpenCV-Pythong&Q4.1.2.39 and NumPy V.1.18.1.

The field of Computer Vision or Machine
only trying to show that, with a bit of w
MINI robot. References for Machine@

mending a few that he is familiar withY

isiom is large and complex, thus in this section the author is
der can incorporate Machine Vision capabilities to a
penCV and NumPy abound, so the author is only recom-

9

e “Learning OpenCY
gramming langu

Kaehler and Bradski (2017), this book is written for the C/C++ pro-
is a thorough reference to keep.
of OpenCV book references in Python, the author has used “Learn

OpenCV, 4 ding Projects” by Escriva and Mendonga (2018) and “OpenCV 3 Computer
Vision vl n Cookbook™ by Spizhevoy and Rybnikov (2018) and had found them useful.

e Web rces (free and at cost) for OpenCV-Python and NumPy can be found at many places
an are a few:

tps://opencv-python-tutroals.readthedocs.io/en/latest/index.html
https://www.learnopencv.com/about/

QO o https://www.pyimagesearch.com/

o http:// www.numpy.org/ and https://docs.scipy.org/doc/numpy/.
o http://cs231n.github.io/python-numpy-tutorial/

The author assumes that most readers are aware that a color digital image consists of physical pixels in a
2-dimensional array such as 1280 x 1024 or 3840 x 1600 (https://en.wikipedia.org/wiki/Color_image). Each
of these physical pixels is in fact a triplet of pixels in the primary colors Red, Green, and Blue (also known
as the RGB Color Model - https://en.wikipedia.org/wiki/RGB color model). The RGB Color Model is

60

needed to capture a color scene from the real world into a video camera sensor and to display the same color
scene on a computer monitor (https://www.visiononline.org/userassets/aiauploads/file/cvp_the-
fundamentals-of-camera-and-image-sensor-technology jon-chouinard.pdf). When these triplet light sources
from a color display reach the human eye, a very complex bio-physical process occurs to give us the sensa-
tion of color (https:/www.olympus-lifescience.com/en/microscope-
resource/primetr/lightandcolor/humanvisionintro/). In turn, we usually describe those color sensations as
red, green and blue (the primary colors), but also as yellow or brown or violet (generally called “hue”).
example, to create the “yellow” sensation we would have to turn on the “red” and “green” light sourgg %
{

while providing no “blue” light. Thus, from the point of view of color image processing, we would§

use at least two parameters (Red & Green) to define a single hue (Yellow). For this reason, oth

models are created (derived from the RGB model) to more closely align with how humans classify

ceived colors (https://en.wikipedia.org/wiki/HSL, and HSV), where we would need only #ne parameter to

vividness or brightness of a particular color perceived). We will be using the HSV
thon projects described in this Sections 8.8.5 and 8.8.6.

ment of Zork (therefore the camera — see Fig. 8.90) to position a central Regi Interest (ROI) onto an
object of interest to display its HSV data. This project also gives the user on of recording and paus-
ing multiple video clips into a single video file.

First let’s look at the project “M_RC Vision HSV.py” where the user can Ee control the move-

1

def backward(robot):
ec.run_motion(robot, 2)
return

AaE i mib { makak

Fig. 8.90 Run-time Displays for “M_RC Vision HSV.py”.

qn thz project “M_HSV_ Tracker Walker.py”, the user can specify either “Blue” or “Yellow” objects
fort ot Zork to autonomously search for and then, once found, approach it within a given distance con-
trolled by the Left and Right IRSS-10 sensors on the MINI.

61

Fig. 8.102 “M_HSV_ Tracker Walker.py” can be used to track “Blu%“Yellow” objects.
-

8.8.6 Dual Color Trackers with Web Cam using OpenCV & Th

For this last PYTHON project, the code developed for “M_HS
suitable Threads for Zira and Zork and the author chose a “gagmca

application project “M_Dual HSV_ Trackers.py”.

“N_Dual_HSV_Tréckers-py"
@ Run Time

er_Walker.py” is adapted into
ation for this Thread Programming

: _-, 7 ,xJ%:_;{ =

Initial Display 2 I‘ ’ Game Start

| Game End

& 128 Three Screen Captures during Video 8.13 for “M_Dual HSV_ Trackers.py”.

62

